Radical imbriquéEn mathématiques, en particulier en algèbre, les radicaux imbriqués (ou radicaux emboités) sont des expressions contenant des racines d'expressions contenant elles-mêmes des racines. Par exemple qui apparaît dans l'étude du pentagone régulier, ou d'autres plus complexes telles que . On peut désimbriquer certains radicaux imbriqués. Par exemple : Mais la désimbrication de radicaux est généralement considérée comme un problème difficile.
Cercle de CarlyleEn mathématiques, un cercle de Carlyle (du nom de son inventeur Thomas Carlyle) est un cercle associé à une équation du second degré, dans un plan muni d'un repère orthonormé. Le cercle a la propriété de construire les solutions de l'équation comme les intersections du cercle avec l'axe des abscisses. Les cercles de Carlyle sont notamment utilisés dans la construction à la règle et au compas de polygones réguliers.
Solution in radicalsA solution in radicals or algebraic solution is a closed-form expression, and more specifically a closed-form algebraic expression, that is the solution of a polynomial equation, and relies only on addition, subtraction, multiplication, division, raising to integer powers, and the extraction of nth roots (square roots, cube roots, and other integer roots). A well-known example is the solution of the quadratic equation There exist more complicated algebraic solutions for cubic equations and quartic equations.
ArithmétiquesLes Arithmétiques (Arithmetica) est une œuvre mathématique en grec due à Diophante d'Alexandrie, qui a eu une grande influence dans l'histoire des mathématiques. Elle aurait été écrite au de notre ère, selon l'hypothèse la plus courante chez les historiens, mais elle est difficile à dater. Elle se présente comme une liste de problèmes résolus, de nature que l'on pourrait qualifier aujourd'hui d'arithmétique ou algébrique : les problèmes se traduisent par des équations polynomiales portant sur des nombres rationnels positifs.
BrahmasphutasiddhantaLe Brāhmasphuṭasiddhānta (ब्राह्मस्फुटसिद्धान्त), datant de 628, est le principal livre écrit par le mathématicien indien Brahmagupta. Il contient de nombreuses avancées en mathématiques : une bonne compréhension du zéro, des règles de manipulation des nombres positifs et négatifs, une méthode de calcul des racines carrés, des méthodes de résolution des équations linéaires et quadratiques, des règles pour les séries... C'est dans cet ouvrage que se trouvent démontrés l'identité de Brahmagupta et le théorème de Brahmagupta.
UnivariateIn mathematics, a univariate object is an expression, equation, function or polynomial involving only one variable. Objects involving more than one variable are multivariate. In some cases the distinction between the univariate and multivariate cases is fundamental; for example, the fundamental theorem of algebra and Euclid's algorithm for polynomials are fundamental properties of univariate polynomials that cannot be generalized to multivariate polynomials.
Irrationnel quadratiqueUn irrationnel quadratique est un nombre irrationnel solution d'une équation quadratique à coefficients rationnels, autrement dit, un nombre réel algébrique de degré 2. Il engendre donc un corps quadratique réel Q(), où d est un entier positif sans facteur carré. Les irrationnels quadratiques sont caractérisés par la périodicité à partir d'un certain rang de leur développement en fraction continue (théorème de Lagrange). Les exemples les plus simples d'irrationnels quadratiques sont les racines carrées d'entiers naturels non carrés (le plus célèbre étant ).
Plimpton 322Parmi les quelque babyloniennes mises au jour depuis le début du , plusieurs milliers offrent un contenu de nature mathématique. La tablette nommée Plimpton 322 (parce qu'elle porte le dans la collection « G. A. Plimpton » de l’université Columbia) est l'un des spécimens les plus connus de ces mathématiques babyloniennes. Cette tablette, dont la rédaction daterait d’environ , comporte un tableau de nombres cunéiformes rangés dans 4 colonnes sur 15 lignes.
SridharaŚrīdhara, Śrīdharācāryya or Śrīdhara Acharya ( 870 CE – 930 CE) was an Indian mathematician, Sanskrit pandit and philosopher. He was born in Bhuriśreṣṭi (Bhurisriṣṭi or Bhurśuṭ) village in South Rādha at present day Hugli in West Bengal, then undivided Bengal with its Capital at Gaur. His father's name was Baladevācārya or Baladeva Acharya and his mother's name was Acchoka Devi. His father was a Sanskrit pandit . He is known for two main treatises: Trisatika (300) (sometimes called the Patiganitasara ) and the Pāṭīgaṇita (পাটীগণিত).