Graphe toroïdalright|frame| Un graphe plongé sur le tore de telle façon que les arêtes ne se coupent pas. En mathématiques, et plus précisément en théorie des graphes, un graphe G est toroïdal s'il peut être plongé sur le tore, c'est-à-dire que les sommets du graphe peuvent être placés sur le tore de telle façon que les arêtes ne se coupent pas. En général dire qu'un graphe est toroïdal sous-entend également qu'il n'est pas planaire.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Tutte embeddingIn graph drawing and geometric graph theory, a Tutte embedding or barycentric embedding of a simple, 3-vertex-connected, planar graph is a crossing-free straight-line embedding with the properties that the outer face is a convex polygon and that each interior vertex is at the average (or barycenter) of its neighbors' positions. If the outer polygon is fixed, this condition on the interior vertices determines their position uniquely as the solution to a system of linear equations.
Théorème de VizingLe théorème de Vizing est un théorème de la théorie des graphes qui stipule que la coloration des arêtes d'un graphe G peut s'effectuer à l'aide de Δ+1 couleurs au maximum, où Δ est le degré maximal du graphe G. Il est dû à Vadim G. Vizing. Une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. On note χ′(G) le nombre minimum de couleur nécessaire pour avoir une coloration des arêtes.
Arbre couvrantDans le domaine mathématique de la théorie des graphes, un arbre couvrant d'un graphe non orienté et connexe est un arbre inclus dans ce graphe et qui connecte tous les sommets du graphe. De façon équivalente, c'est un sous-graphe acyclique maximal, ou encore, un sous-graphe couvrant connexe minimal. Dans certains cas, le nombre d'arbres couvrants d'un graphe connexe est facilement calculable. Par exemple, si lui-même est un arbre, alors , tandis que si est un n-cycle, alors .
Triangulation d'un polygoneEn géométrie algorithmique, la triangulation d'un polygone consiste à décomposer ce polygone en un ensemble (fini) de triangles. Une triangulation d'un polygone P est une partition de P en un ensemble de triangles qui ne se recouvrent pas, et dont l'union est P. Dans le cas le plus restrictif, on impose que les sommets des triangles ne soient que les sommets de P. Dans un cadre plus permissif, on peut rajouter des sommets à l'intérieur de P ou sur la frontière pour servir de sommets aux triangles.
Graphic matroidIn the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
Cycle spaceIn graph theory, a branch of mathematics, the (binary) cycle space of an undirected graph is the set of its even-degree subgraphs. This set of subgraphs can be described algebraically as a vector space over the two-element finite field. The dimension of this space is the circuit rank of the graph. The same space can also be described in terms from algebraic topology as the first homology group of the graph. Using homology theory, the binary cycle space may be generalized to cycle spaces over arbitrary rings.
Oriented matroidAn oriented matroid is a mathematical structure that abstracts the properties of directed graphs, vector arrangements over ordered fields, and hyperplane arrangements over ordered fields. In comparison, an ordinary (i.e., non-oriented) matroid abstracts the dependence properties that are common both to graphs, which are not necessarily directed, and to arrangements of vectors over fields, which are not necessarily ordered. All oriented matroids have an underlying matroid.
Cycle basisIn graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles. A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree.