Graphe cubiqueEn théorie des graphes, une branche des mathématiques, un graphe cubique est un graphe régulier de degré 3. En d'autres termes, c'est un graphe dans lequel il y a exactement trois arêtes incidentes à chaque sommet. Le graphe complet K4 est le plus petit graphe cubique. Le graphe biparti complet K3,3 est le plus petit graphe cubique non-planaire. Le graphe de Petersen est le plus petit graphe cubique de maille 5. Le graphe de Heawood est le plus petit graphe cubique de maille 6.
Graphe de PetersenLe graphe de Petersen est, en théorie des graphes, un graphe particulier possédant et . Il s'agit d'un petit graphe qui sert d'exemple et de contre-exemple pour plusieurs problèmes de la théorie des graphes. Il porte le nom du mathématicien Julius Petersen, qui l'introduisit en 1898 en tant que plus petit graphe cubique sans isthme dont les arêtes ne peuvent être colorées avec trois couleurs. Il a cependant été mentionné par Alfred Kempe pour la première fois auparavant, en 1886.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Partial cubeIn graph theory, a partial cube is a graph that is isometric to a subgraph of a hypercube. In other words, a partial cube can be identified with a subgraph of a hypercube in such a way that the distance between any two vertices in the partial cube is the same as the distance between those vertices in the hypercube. Equivalently, a partial cube is a graph whose vertices can be labeled with bit strings of equal length in such a way that the distance between two vertices in the graph is equal to the Hamming distance between their labels.
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Bipolar orientationIn graph theory, a bipolar orientation or st-orientation of an undirected graph is an assignment of a direction to each edge (an orientation) that causes the graph to become a directed acyclic graph with a single source s and a single sink t, and an st-numbering of the graph is a topological ordering of the resulting directed acyclic graph. Let G = (V,E) be an undirected graph with n = |V| vertices. An orientation of G is an assignment of a direction to each edge of G, making it into a directed graph.
Matroid girthIn matroid theory, a mathematical discipline, the girth of a matroid is the size of its smallest circuit or dependent set. The cogirth of a matroid is the girth of its dual matroid. Matroid girth generalizes the notion of the shortest cycle in a graph, the edge connectivity of a graph, Hall sets in bipartite graphs, even sets in families of sets, and general position of point sets. It is hard to compute, but fixed-parameter tractable for linear matroids when parameterized both by the matroid rank and the field size of a linear representation.
Nowhere-zero flowIn graph theory, a nowhere-zero flow or NZ flow is a network flow that is nowhere zero. It is intimately connected (by duality) to coloring planar graphs. Let G = (V,E) be a digraph and let M be an abelian group. A map φ: E → M is an M-circulation if for every vertex v ∈ V where δ+(v) denotes the set of edges out of v and δ−(v) denotes the set of edges into v. Sometimes, this condition is referred to as Kirchhoff's law. If φ(e) ≠ 0 for every e ∈ E, we call φ a nowhere-zero flow, an M-flow, or an NZ-flow.
Snark (graphe)En théorie des graphes, une branche des mathématiques, un snark est un graphe cubique connexe, sans isthme et d'indice chromatique égal à 4. En d'autres termes, c'est un graphe dans lequel chaque sommet a trois voisins, et dont les arêtes ne peuvent pas être colorées avec seulement 3 couleurs sans que deux arêtes de même couleur ne se rencontrent en un même sommet (d'après le théorème de Vizing, l'indice chromatique d'un graphe cubique est 3 ou 4). Pour éviter les cas triviaux, on exige souvent de plus que les snarks aient une maille d'au moins 5.
Maille (théorie des graphes)En théorie des graphes, la maille d'un graphe est la longueur du plus court de ses cycles. Un graphe acyclique est généralement considéré comme ayant une maille infinie (ou, pour certains auteurs, une maille de −1). La maille d'un graphe est la longueur du plus court de ses cycles. Image:Petersen graph blue.svg|Le [[graphe de Petersen]] a une maille de 5 et est une cage. Image:Heawood_Graph.svg|Le [[graphe de Heawood]] a une maille de 6 et est une cage. Image:Frucht_graph.neato.