Inégalité torique de LoewnerEn géométrie différentielle, l'inégalité torique de Loewner est une inégalité établie par le mathématicien américain Charles Loewner. Elle relie la systole et l'aire d'une métrique riemannienne quelconque d'un tore de dimension 2. thumb|La plus petite boucle d'un tore. En 1949, Charles Loewner démontre que chaque métrique d'un tore de dimension 2 () satisfait l'inégalité optimale : où sys est sa systole. La constante figurant dans le membre de droite de l'inégalité est la constante d'Hermite en dimension 2
Pu's inequalityIn differential geometry, Pu's inequality, proved by Pao Ming Pu, relates the area of an arbitrary Riemannian surface homeomorphic to the real projective plane with the lengths of the closed curves contained in it. A student of Charles Loewner, Pu proved in his 1950 thesis that every Riemannian surface homeomorphic to the real projective plane satisfies the inequality where is the systole of . The equality is attained precisely when the metric has constant Gaussian curvature.
Gromov's systolic inequality for essential manifoldsIn the mathematical field of Riemannian geometry, M. Gromov's systolic inequality bounds the length of the shortest non-contractible loop on a Riemannian manifold in terms of the volume of the manifold. Gromov's systolic inequality was proved in 1983; it can be viewed as a generalisation, albeit non-optimal, of Loewner's torus inequality and Pu's inequality for the real projective plane. Technically, let M be an essential Riemannian manifold of dimension n; denote by sysπ1(M) the homotopy 1-systole of M, that is, the least length of a non-contractible loop on M.
Gromov's inequality for complex projective spaceIn Riemannian geometry, Gromov's optimal stable 2-systolic inequality is the inequality valid for an arbitrary Riemannian metric on the complex projective space, where the optimal bound is attained by the symmetric Fubini–Study metric, providing a natural geometrisation of quantum mechanics. Here is the stable 2-systole, which in this case can be defined as the infimum of the areas of rational 2-cycles representing the class of the complex projective line in 2-dimensional homology. The inequality first appeared in as Theorem 4.
Systoles of surfacesIn mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949 (unpublished; see remark at end of P. M. Pu's paper in '52). Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Filling area conjectureIn differential geometry, Mikhail Gromov's filling area conjecture asserts that the hemisphere has minimum area among the orientable surfaces that fill a closed curve of given length without introducing shortcuts between its points. Every smooth surface M or curve in Euclidean space is a metric space, in which the (intrinsic) distance dM(x,y) between two points x, y of M is defined as the infimum of the lengths of the curves that go from x to y along M.
Surface de BolzaEn mathématiques, la surface de Bolza (du nom d'Oskar Bolza) est une surface de Riemann compacte de genre 2. Elle a le groupe d'automorphismes conformes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 2, à savoir le groupe O de l'octaèdre, d'ordre 48. La surface de Bolza est la surface de Riemann associée à la courbe algébrique plane d'équation dans . Parmi toutes les surfaces hyperboliques de genre 2, la surface de Bolza possède la plus longue systole. M. Katz et S.
Quartique de Kleinthumb|La quartique de Klein est le quotient d'un pavage uniforme triangulaire d'ordre 7. En géométrie hyperbolique, la quartique de Klein, du nom du mathématicien allemand Felix Klein, est une surface de Riemann compacte de genre 3. Elle a le groupe d'automorphismes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 3, à savoir le groupe simple d'ordre 168. La quartique de Klein est en conséquence la de genre le plus bas possible. Surface de Bolza Surface de Macbeath Théorème de Stark-Hee
Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.