Kleene's algorithmIn theoretical computer science, in particular in formal language theory, Kleene's algorithm transforms a given nondeterministic finite automaton (NFA) into a regular expression. Together with other conversion algorithms, it establishes the equivalence of several description formats for regular languages. Alternative presentations of the same method include the "elimination method" attributed to Brzozowski and McCluskey, the algorithm of McNaughton and Yamada, and the use of Arden's lemma.
Weighted automatonIn theoretical computer science and formal language theory, a weighted automaton or weighted finite-state machine is a generalization of a finite-state machine in which the edges have weights, for example real numbers or integers. Finite-state machines are only capable of answering decision problems; they take as input a string and produce a Boolean output, i.e. either "accept" or "reject". In contrast, weighted automata produce a quantitative output, for example a count of how many answers are possible on a given input string, or a probability of how likely the input string is according to a probability distribution.
Automate d'arbresEn informatique théorique, plus précisément en théorie des langages, un automate d'arbre est une machine à états qui prend en entrée un arbre, plutôt qu'une chaîne de caractères pour les automates plus conventionnels, comme les automates finis. Comme pour les automates classiques, les automates d'arbres finis (FTA pour finite tree automata en anglais) peuvent être déterministes ou pas. Suivant la façon dont les automates se « déplacent » sur l'arbre qu'ils traitent, les automates d'arbres peuvent être de deux types : (a) ascendants ; (b) descendants.
Langage récursifEn mathématiques, en logique et en informatique, un langage récursif est un type de langage formel qui est aussi appelé récursif, décidable, ou Turing-decidable. Il y a plusieurs définitions équivalentes de langage récursif. On peut définir cette notion directement, comme une généralisation de celle d'ensemble récursif (des sous-ensembles d'entiers ou de uples d'entiers), ou passer par des codages dans les entiers, en utilisant la théorie de la calculabilité.
String operationsIn computer science, in the area of formal language theory, frequent use is made of a variety of string functions; however, the notation used is different from that used for computer programming, and some commonly used functions in the theoretical realm are rarely used when programming. This article defines some of these basic terms. A string is a finite sequence of characters. The empty string is denoted by . The concatenation of two string and is denoted by , or shorter by . Concatenating with the empty string makes no difference: .
Minimisation d'un automate fini déterministevignette|upright=1.5|Dans cet automate, tous les états sont accessibles, les états c, d et e sont indistinguables, ainsi que les états a et b. vignette|upright=1.5|Automate minimal équivalent. Les états indistinguables sont regroupés en un seul état. En informatique théorique, et plus particulièrement en théorie des automates, la minimisation d'un automate fini déterministe est l'opération qui consiste à transformer un automate fini déterministe donné en un automate fini déterministe ayant le nombre minimal d'états et qui reconnaît le même langage rationnel.
Algorithme de ThompsonEn informatique théorique plus précisément en théorie des langages, l'algorithme de Thompson est un algorithme qui, étant donné une expression régulière, crée un automate fini qui reconnaît le langage décrit par cette expression. Il est nommé ainsi d'après Ken Thompson qui l'a décrit en 1968. Le théorème de Kleene affirme que l'ensemble des langages rationnels sur un alphabet est exactement l'ensemble des langages sur reconnaissables par automate fini. Il existe des algorithmes pour passer de l'un à l'autre.
Rational seriesIn mathematics and computer science, a rational series is a generalisation of the concept of formal power series over a ring to the case when the basic algebraic structure is no longer a ring but a semiring, and the indeterminates adjoined are not assumed to commute. They can be regarded as algebraic expressions of a formal language over a finite alphabet. Let R be a semiring and A a finite alphabet. A non-commutative polynomial over A is a finite formal sum of words over A. They form a semiring .
Automate fini alternantEn informatique théorique, et notamment en théorie des automates, un automate fini alternant est une extension des automates finis. Dans un automate fini non déterministe usuel, un mot est accepté si, parmi les états atteints, il y a au moins un état final. Dans automate fini alternant, c'est la valeur d'une fonction booléenne sur les états atteints qui définit la condition d'acceptation.
Algèbre de KleeneEn mathématiques, une algèbre de Kleene (du nom du logicien américain Stephen Cole Kleene) correspond à l'un des deux concepts suivants : Un treillis ordonné et distributif avec une involution satisfaisant les lois de De Morgan et l'inégalité x ∧ −x ≤ y ∨ −y. Ce qui fait que chaque algèbre booléenne est une algèbre de Kleene, la réciproque étant complément. À l'instar des algèbres de Boole qui sont basées sur les propositions logiques classiques, les algèbres de Kleene sont basées sur la logique ternaire de Kleene.