Résumé
L'hypothèse ergodique, ou hypothèse d'ergodicité, est une hypothèse fondamentale de la physique statistique. Elle fut formulée initialement par Ludwig Boltzmann en 1871 pour les besoins de sa théorie cinétique des gaz. Elle s'appliquait alors aux systèmes composés d'un très grand nombre de particules, et affirmait qu'à l'équilibre, la valeur moyenne d'une grandeur calculée de manière statistique est égale à la moyenne d'un très grand nombre de mesures prises dans le temps. La première valeur est celle que permet de calculer la physique statistique, la seconde est proche de ce qu'on peut expérimentalement mesurer. L'hypothèse ergodique est donc fondamentale pour un bon rapprochement entre la théorie et l'expérience. Un système pour lequel l'hypothèse ergodique est vérifiée sera qualifié de système ergodique. Dans la plupart des cas, il est très difficile de démontrer rigoureusement qu'un système est ergodique ou non. L'analyse mathématique de ce problème a donné naissance à la théorie ergodique qui précise la nature mathématique de l'hypothèse et donne des résultats sur ses conditions de validité. Mais l'hypothèse ergodique reste souvent une simple hypothèse, jugée vraisemblable a posteriori quand elle permet de faire des prédictions correctes. En ce sens, elle constitue un point faible de la physique statistique. L'hypothèse d'ergodicité intervient également en traitement du signal, où elle consiste à admettre que l'évolution d'un signal aléatoire au cours du temps apporte la même information qu'un ensemble de réalisations. Elle est importante dans l'étude des chaînes de Markov, les processus stationnaires et pour l'apprentissage automatique. D'une façon intuitive, et pour reprendre l'exemple d'un gaz, les milliards de particules qui le constituent peuvent être considérées comme des copies les unes des autres ayant toutes le même comportement aléatoire. Elles prennent chacune des valeurs aléatoires, probablement différentes, de position et de vitesse à un instant donné.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (9)
Théorie ergodique
vignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Ergodicity
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.
Théorème de récurrence de Poincaré
Le théorème de récurrence de Poincaré dit que, pour presque toutes les « conditions initiales », un système dynamique conservatif dont l'espace des phases est de « volume » fini va repasser au cours du temps aussi près que l'on veut de sa condition initiale, et ce de façon répétée. Soit un système dynamique mesuré, c’est-à-dire un triplet où : est un espace mesurable, qui représente l'espace des phases du système. est une mesure finie sur , est une fonction mesurable préservant la mesure , c’est-à-dire telle que : Soit un sous-ensemble mesurable.
Afficher plus
Cours associés (12)
PHYS-316: Statistical physics II
Introduction à la théorie des transitions de phase
MATH-518: Ergodic theory
This is an introductory course in ergodic theory, providing a comprehensive overlook over the main aspects and applications of this field.
MATH-487: Topics in stochastic analysis
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
Afficher plus