Ornstein isomorphism theoremIn mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, ergodic automorphisms of the n-torus, and the continued fraction transform.
Invariant measureIn mathematics, an invariant measure is a measure that is preserved by some function. The function may be a geometric transformation. For examples, circular angle is invariant under rotation, hyperbolic angle is invariant under squeeze mapping, and a difference of slopes is invariant under shear mapping. Ergodic theory is the study of invariant measures in dynamical systems. The Krylov–Bogolyubov theorem proves the existence of invariant measures under certain conditions on the function and space under consideration.
Conservative systemIn mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies.
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Suite équidistribuéeEn mathématiques, une suite de nombres réels est dite équidistribuée ou uniformément répartie si la proportion de termes qui se retrouvent dans un sous-intervalle est proportionnelle à la longueur de cet intervalle. De telles suites sont étudiées dans la théorie approximation diophantienne et dans diverses applications de la méthode de Monte-Carlo. Une suite {s1, s2, s3, ...} de nombres réels est dite équidistribuée sur un intervalle [a, b] si, pour tout sous-intervalle [c, d] de [a, b], on a : (Ici, la notation |{s1,.
Processus ergodiqueUn est un processus stochastique pour lequel les statistiques peuvent être approchées par l'étude d'une seule réalisation suffisamment longue. Le théorème ergodique affirme que, sous condition, converge vers une limite pour presque toutes les réalisations , mais ne garantit pas l'égalité des à l'espérance . Un signal peut être: stationnaire mais non ergodique : par exemple le signal constant pour chaque réalisation. ergodique mais non stationnaire : par exemple le signal .
Paul HalmosPaul Richard Halmos ( à Budapest en Hongrie - ), est un mathématicien américain. Il est connu pour ses recherches principalement dans les domaines de la théorie des probabilités, les statistiques, la , la théorie ergodique et l'analyse fonctionnelle (les espaces de Hilbert en particulier). Il fait partie du groupe des Martiens. Né en Hongrie dans une famille juive, il émigre aux États-Unis en 1929 et s'inscrit à l'université de l'Illinois à Urbana-Champaign à l'âge de 15 ans.
Sous-groupe à un paramètreUn sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : R → G. Plus explicitement, c est une application différentiable vérifiant : En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient : où Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e.