Un sous-groupe à un paramètre d'un groupe de Lie réel G est un morphisme de groupes de Lie c : R → G. Plus explicitement, c est une application différentiable vérifiant : En dérivant cette relation par rapport à la variable s et en évaluant en s = 0, il vient : où Lc(t) désigne la multiplication à gauche par c(t). Un sous-groupe à un paramètre s'obtient comme orbite de l'élément neutre par un champ de vecteurs invariant à gauche de G. Un tel champ X est déterminé par sa valeur X(e) en l'élément neutre e. Il y a donc correspondance univoque entre sous-groupe à un paramètre et l'espace tangent g de G en e : à tout sous-groupe à un paramètre c de G est associé le vecteur c(0) de g ; à tout vecteur v de g est associé le sous-groupe à un paramètre c : R → G défini par l'équation différentielle c '(t) = TeLc(t)[v] et la condition initiale c '(0) = v. Les sous-groupes à un paramètre interviennent naturellement dans la définition de l'application exponentielle du groupe de Lie G : l'application exponentielle est l'application exp : g → G définie par exp(v) = c(1) où c est le sous-groupe à un paramètre de G associé à X ; tout sous-groupe à un paramètre c s’écrit de manière unique c(t) = exp(t.v) où v = c '(0). Tout espace vectoriel réel E de dimension finie est un groupe de Lie, la loi interne étant l'addition vectorielle. L'espace tangent en 0 de E s'identifie naturellement avec E en tant qu'espace vectoriel réel. Les sous-groupes à un paramètre de E sont simplement les applications t ↦ t.v où v parcourt E : ce sont les droites vectorielles paramétrées de E. La classification des groupes de Lie commutatifs est connue et élémentaire. Tout groupe de Lie commutatif G se réalise comme quotient d'un espace vectoriel E par un sous-groupe discret, un sous-réseau de E. Les sous-groupes à un paramètre de G s'obtiennent donc par passage au quotient des droites paramétrées de E. Un exemple important est le tore R/Z. Les sous-groupes à un paramètre sont les applications cv : t → t.v mod Z où v parcourt R.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.