Théorème de convergence monotoneEn mathématiques, le théorème de convergence monotone (ou théorème de Beppo Levi) est un résultat de la théorie de l'intégration de Lebesgue. Il permet de démontrer le lemme de Fatou et le théorème de convergence dominée. Ce théorème indique que pour une suite croissante de fonctions mesurables positives on a toujours la convergence de la suite de leurs intégrales vers l'intégrale de la limite simple. Le théorème autorise donc, pour une telle suite de fonctions, à intervertir les symboles et .
Fonction étagéeEn mathématiques et en analyse : Une fonction simple est une fonction numérique dont l' est constituée d'un nombre fini de valeurs réelles (ou éventuellement complexes) ; Une fonction étagée est une fonction simple définie sur un espace mesurable et qui est elle-même une fonction mesurable ; Une fonction en escalier est une fonction étagée définie sur l’ensemble des réels et dont les valeurs (réelles) sont constantes sur des intervalles : ce sont donc des fonctions constantes par morceaux.
Ensemble négligeablevignette|Le triangle de Sierpiński est un exemple d'ensemble nul de points dans R 2 \mathbb {R} ^{2}. En théorie de la mesure, dans un espace mesuré, un ensemble négligeable est un ensemble de mesure nulle ou une partie d'un tel ensemble. La définition peut dépendre de la mesure choisie : deux mesures sur un même espace mesurable qui ont les mêmes ensembles de mesure nulle sont dites équivalentes. À un niveau élémentaire, il est possible d'aborder la notion d'ensemble négligeable pour un certain nombre d'espaces (dont la droite réelle) sans avoir à introduire une mesure.
Fonction caractéristique (théorie des ensembles)En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E. Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction : D'autres notations souvent employées pour la fonction caractéristique de F sont 1 et 1, voire I (i majuscule). Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique.
Théorème de FubiniEn mathématiques, et plus précisément en analyse, le théorème de Fubini fournit des informations sur le calcul d'intégrales définies sur des ensembles produits et permet le calcul de telles intégrales. Ce résultat a été introduit par Guido Fubini en 1907. Il indique que sous certaines conditions, pour intégrer une fonction à plusieurs variables, on peut intégrer les variables les unes à la suite des autres.
Intégrale de RiemannEn mathématiques et plus particulièrement en analyse réelle, l'intégrale de Riemann est une façon de définir l'intégrale, sur un segment, d'une fonction réelle. En termes géométriques, cette intégrale s'interprète comme l'aire du domaine sous la courbe représentative de la fonction, comptée algébriquement. Le procédé général utilisé pour définir l'intégrale de Riemann est l'approximation par des fonctions en escalier, pour lesquelles la définition de l'aire sous la courbe est aisée.
Carré sommableEn mathématiques, une fonction définie sur un espace mesuré Ω et à valeurs dans R ou C est dite de carré sommable ou de carré intégrable si elle appartient à l’espace L(Ω) des fonctions dont l'intégrale du carré (du module dans le cas des nombres complexes) converge sur Ω. Par exemple, une fonction mesurable de R dans C est de carré sommable lorsque l’intégrale suivante (au sens de Lebesgue) converge, c'est-à-dire si elle existe et correspond ainsi à un nombre fini.
Intégrale de DaniellEn mathématiques, l'intégrale de Daniell est un type d'intégration qui généralise le concept plus élémentaire de l'intégrale de Riemann qui est généralement la première enseignée. Une des principales difficultés de la formulation traditionnelle de l'intégrale de Lebesgue est qu'elle nécessite le développement préalable de la théorie de la mesure avant d'obtenir les principaux résultats de cette intégrale.
Lemme de FatouEn mathématiques, plus précisément en analyse, le lemme de Fatou est un résultat important dans la théorie de l'intégration de Lebesgue. Il a été démontré par le mathématicien français Pierre Fatou (1878-1929). Ce lemme compare l'intégrale d'une limite inférieure de fonctions mesurables positives avec la limite inférieure de leurs intégrales. Il est en général présenté dans une suite de trois résultats : d'abord le théorème de convergence monotone, qui sert ensuite à démontrer le lemme de Fatou, puis celui-ci est utilisé pour démontrer le théorème de convergence dominée.
Intégrale de Stieltjesvignette|droite|Thomas Stieltjes (1856-1894). L'intégrale de Stieltjes constitue une généralisation de l'intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f et g définies sur un intervalle fermé [a, b], ainsi qu'une subdivision a = x < x < x < ... < x = b de cet intervalle. Si la somme de Riemann avec ξi ∈ [x, x], tend vers une limite S lorsque le pas max(x – x) tend vers 0, alors S est appelée l'intégrale de Stieltjes (ou parfois l'intégrale de Riemann-Stieltjes) de la fonction f par rapport à g.