Méthode d'exhaustionEn mathématiques, la méthode d'exhaustion est un procédé ancien de calcul d'aires, de volumes et de longueurs de figures géométriques complexes. La quadrature est la recherche de l'aire d'une surface, la rectification est celle de la longueur d'une courbe. Dans le cas du calcul de l'aire A d'une figure plane, la méthode d'exhaustion consiste en un double raisonnement par l'absurde : on suppose que son aire est strictement supérieure à A, puis on aboutit à une contradiction ; on suppose ensuite que son aire est strictement inférieure à A, puis on aboutit à une autre contradiction.
Méthode des indivisiblesvignette|Illustration du principe de Cavalieri : les deux piles de jetons ont même volume car leurs sections par des plans parallèles sont de même aire. En géométrie, la méthode des indivisibles ou principe de Cavalieri est une méthode de calcul d'aire et de volume inventée par Bonaventura Cavalieri au , développée par Gilles Personne de Roberval, Evangelista Torricelli et Blaise Pascal, plus efficace que la méthode d'exhaustion d'Archimède mais aussi plus risquée à appliquer.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
ArchimèdeArchimède de Syracuse (en grec ancien : / Arkhimếdês), né à Syracuse vers 287 av. J.-C. et mort en cette même ville en 212 av. J.-C., est un grand scientifique grec de Sicile (Grande-Grèce) de l'Antiquité, physicien, astronome, mathématicien et ingénieur. Bien que peu de détails de sa vie soient connus, il est considéré comme l'un des principaux scientifiques de l'Antiquité classique. Parmi ses domaines d'étude en physique, on peut citer l'hydrostatique , la mécanique statique, et l'explication du principe du levier.
Tangente (géométrie)Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.
Calcul infinitésimalLe calcul infinitésimal (ou calcul différentiel et intégral) est une branche des mathématiques, développée à partir de l'algèbre et de la géométrie, qui implique deux idées majeures complémentaires : Le calcul différentiel, qui établit une relation entre les variations de plusieurs fonctions, ainsi que la notion de dérivée. La vitesse, l'accélération, et les pentes des courbes des fonctions mathématiques en un point donné peuvent toutes être décrites sur une base symbolique commune, les taux de variation, l'optimisation et les taux liés.
Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.