Résumé
Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel. Se contenter comme on le fait parfois de définir la tangente comme une droite qui « touche la courbe sans la traverser » serait incorrect, puisque rien n'empêche la courbe de retraverser une de ses tangentes un peu plus loin (le concept de tangente au point M ne décrit bien la situation que dans un petit voisinage du point M). il y a des situations exceptionnelles où la tangente en M traverse la courbe justement au point M. On dit alors qu'il y a une inflexion en M. L'homologue de la notion de tangente pour les surfaces est celle de plan tangent. Il peut être défini en considérant l'ensemble des courbes tracées sur la surface et passant par un point donné, et en considérant l'ensemble des tangentes obtenu. On peut ensuite généraliser à des objets de dimension plus grande que 2. vignette|droite|280px|Approche tangente La tangente à une courbe C en un point A d'abscisse a est la position limite, quand elle existe, de la droite sécante (AB) lorsque le point B de la courbe tend vers le point A. Pour être rendue parfaitement rigoureuse, cette définition demande d'introduire des notions de topologie permettant le calcul d'une telle limite. Elle est cependant très imagée. En chacun de ses points le cercle admet une tangente. La tangente en M est la droite passant par M et perpendiculaire au rayon issu de M. Les tangentes au cercle de centre O et de rayon R sont les droites situées à la distance R du point O. Ce sont aussi les droites qui coupent le cercle en exactement un point, mais il s'agit d'une propriété particulière au cercle.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.