A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies with time.
When applied to an audio signal, spectrograms are sometimes called sonographs, voiceprints, or voicegrams. When the data are represented in a 3D plot they may be called waterfall displays.
Spectrograms are used extensively in the fields of music, linguistics, sonar, radar, speech processing, seismology, and others. Spectrograms of audio can be used to identify spoken words phonetically, and to analyse the various calls of animals.
A spectrogram can be generated by an optical spectrometer, a bank of band-pass filters, by Fourier transform or by a wavelet transform (in which case it is also known as a scaleogram or scalogram).
A spectrogram is usually depicted as a heat map, i.e., as an image with the intensity shown by varying the colour or brightness.
A common format is a graph with two geometric dimensions: one axis represents time, and the other axis represents frequency; a third dimension indicating the amplitude of a particular frequency at a particular time is represented by the intensity or color of each point in the image.
There are many variations of format: sometimes the vertical and horizontal axes are switched, so time runs up and down; sometimes as a waterfall plot where the amplitude is represented by height of a 3D surface instead of color or intensity. The frequency and amplitude axes can be either linear or logarithmic, depending on what the graph is being used for. Audio would usually be represented with a logarithmic amplitude axis (probably in decibels, or dB), and frequency would be linear to emphasize harmonic relationships, or logarithmic to emphasize musical, tonal relationships.
Spectrograms of light may be created directly using an optical spectrometer over time.
Spectrograms may be created from a time-domain signal in one of two ways: approximated as a filterbank that results from a series of band-pass filters (this was the only way before the advent of modern digital signal processing), or calculated from the time signal using the Fourier transform.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore l'analyse des données neurophysiologiques, couvrant l'identification AP, les taux de tir, l'activité sous le seuil, l'analyse spectrale FFT et l'analyse déclenchée par des événements à l'aide de MATLAB.
Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use o ...
The use of meteorological radars to study snowfall microphysical properties and processes is well established, in particular via a few distinct techniques: the use of radar polarimetry, of multi-frequency radar measurements, and of the radar Doppler spectr ...
COPERNICUS GESELLSCHAFT MBH2023
,
Modeling directly raw waveforms through neural networks for speech processing is gaining more and more attention. Despite its varied success, a question that remains is: what kind of information are such neural networks capturing or learning for different ...
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
vignette|Un chirp linéaire d'amplitude constante. Un chirp (mot d'origine anglaise signifiant « gazouillis ») est par définition un signal pseudo-périodique modulé en fréquence autour d'une fréquence porteuse et également modulé en amplitude par une enveloppe dont les variations sont lentes par rapport aux oscillations de la phase : La partie réelle de ce signal est tout simplement : On considère souvent le cas particulier du chirp à rampe de fréquence linéaire et à enveloppe constante qui est tellement courant d'utilisation que l'on a tendance à ramener la notion de chirp à ce seul cas particulier : Dans les applications radar ou sonar le chirp linéaire est souvent le signal utilisé pour réaliser la compression d'impulsion.
La forme d'onde d'un signal est la représentation graphique de l'évolution de l'amplitude instantanée d'une onde physique périodique ou aléatoire en fonction du temps. Il peut s'agir d'une onde mécanique ou d'une onde électromagnétique. La représentation d'une forme d'onde utilise le principe des coordonnées cartésiennes, avec le temps en abscisse et l'amplitude en ordonnée. Une forme d'onde peut être observée avec un oscilloscope à bande passante appropriée lorsqu'il s'agit d'un signal électrique direct ou issu de capteurs.