Concepts associés (17)
Linearly ordered group
In mathematics, specifically abstract algebra, a linearly ordered or totally ordered group is a group G equipped with a total order "≤" that is translation-invariant. This may have different meanings. We say that (G, ≤) is a: left-ordered group if ≤ is left-invariant, that is a ≤ b implies ca ≤ cb for all a, b, c in G, right-ordered group if ≤ is right-invariant, that is a ≤ b implies ac ≤ bc for all a, b, c in G, bi-ordered group if ≤ is bi-invariant, that is it is both left- and right-invariant.
Eudoxe de Cnide
Eudoxe de Cnide, en grec ancien (–), est un astronome, géomètre, médecin et philosophe grec. Contemporain de Platon, il tenta le premier de formuler une théorie sur le mouvement des planètes. Ses travaux sont connus d’Archimède. Né à Cnide, en Carie (Asie Mineure) dans une famille fort pauvre, il apprend la géométrie auprès du pythagoricien Archytas (vers ) et la médecine auprès de Philistion de Sicile. À 23 ans, il se rend à Athènes, peut-être chez les cyrénaïques, dont il partageait les idées morales.
Inégalité triangulaire
En géométrie, l'inégalité triangulaire est le fait que, dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés. Cette inégalité est relativement intuitive. Dans la vie ordinaire, comme dans la géométrie euclidienne, cela se traduit par le fait que la ligne droite est le plus court chemin : le plus court chemin d'un point A à un point B est d'y aller tout droit, sans passer par un troisième point C qui ne serait pas sur la ligne droite.
Corps réel clos
En mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
Completeness of the real numbers
Completeness is a property of the real numbers that, intuitively, implies that there are no "gaps" (in Dedekind's terminology) or "missing points" in the real number line. This contrasts with the rational numbers, whose corresponding number line has a "gap" at each irrational value. In the decimal number system, completeness is equivalent to the statement that any infinite string of decimal digits is actually a decimal representation for some real number.
Structure algébrique
En mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.
Non-Archimedean ordered field
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients with a suitable order. The Archimedean property is a property of certain ordered fields such as the rational numbers or the real numbers, stating that every two elements are within an integer multiple of each other.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.