Nombre hyperréelvignette|Représentation des infinitésimaux (ε) et infinis (ω) sur la droite des nombres hyperréels (1/ε = ω)|520x520px En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *R, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ».
Point d'accumulation (mathématiques)En mathématiques, un point d'accumulation d'une partie A d'un espace topologique E est un point x de E qui peut être « approché » par des points de A au sens où chaque voisinage de x – pour la topologie de E – contient un point de A distinct de x. Un tel point x n'est pas nécessairement un point de A. Ce concept généralise la notion de limite, et permet de définir des notions comme les espaces fermés et l'adhérence. De fait, pour qu'un espace soit fermé, il faut et il suffit qu'il contienne tous ses points d'accumulation.
Paradoxes de ZénonLes paradoxes de Zénon forment un ensemble de paradoxes imaginés par Zénon d'Élée pour soutenir la doctrine de Parménide, selon laquelle toute évidence des sens est fallacieuse, et le mouvement est impossible. Plusieurs des huit paradoxes de Zénon ont traversé le temps (rapportés par Aristote dans la Physique et par Simplicius dans un commentaire à ce sujet). Certains ont été considérés, même dans des périodes antiques, comme faciles à réfuter.
Infiniment petitLes infinitésimaux (ou infiniment petits) ont été utilisés pour exprimer l'idée d'objets si petits qu'il n'y a pas moyen de les voir ou de les mesurer. Le mot vient de infinitesimus (latin du ), ce qui signifiait à l'origine l'élément dans une série. Selon la notation de Leibniz, si x est une quantité, dx et Δx peuvent représenter une quantité infinitésimale de x. Dans le langage courant, un objet infiniment petit est un objet qui est plus petit que toute mesure possible, donc non pas d'une taille zéro, mais si petit qu'il ne peut être distingué de zéro par aucun moyen disponible.
Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Ensemble ordonné filtrantEn mathématiques, un ensemble ordonné filtrant est un ensemble ordonné (c'est-à-dire dans lequel on peut dire que certains éléments sont plus grands que d'autres) tel que pour toute paire d'éléments, il existe un élément qui est plus grand que chaque élément de la paire. Cela sous-entend en premier lieu que ce troisième élément peut être comparé aux deux premiers, ce qui n'est pas automatique dans un ensemble ordonné (implicitement partiellement ordonné, par opposition à totalement ordonné).
Limite inductiveEn mathématiques, et plus particulièrement en théorie des catégories et en algèbre universelle, la notion de limite inductive généralise à des structures la notion classique de limite issue de l'analyse. La limite inductive est un cas particulier de colimite en théorie des catégories. Comme sa duale, la limite projective, elle est conceptuellement très proche de la notion de limite rencontrée en analyse et coïncide avec elle dans certains cas. Un premier point clef est la notion de passage à la limite.
Histoire du calcul infinitésimalL'histoire du calcul infinitésimal remonte à l'Antiquité. Sa création est liée à une polémique entre deux mathématiciens : Isaac Newton et Gottfried Wilhelm Leibniz. Néanmoins, on retrouve chez des mathématiciens plus anciens les prémices de ce type de calcul : Archimède, Thābit ibn Qurra, Pierre de Fermat et Isaac Barrow notamment. La notion de nombre dérivé a vu le jour au dans les écrits de Leibniz et de Newton qui le nomme fluxion et qui le définit comme « le quotient ultime de deux accroissements évanescents ».
Méthode d'exhaustionEn mathématiques, la méthode d'exhaustion est un procédé ancien de calcul d'aires, de volumes et de longueurs de figures géométriques complexes. La quadrature est la recherche de l'aire d'une surface, la rectification est celle de la longueur d'une courbe. Dans le cas du calcul de l'aire A d'une figure plane, la méthode d'exhaustion consiste en un double raisonnement par l'absurde : on suppose que son aire est strictement supérieure à A, puis on aboutit à une contradiction ; on suppose ensuite que son aire est strictement inférieure à A, puis on aboutit à une autre contradiction.
Limite projectiveEn mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.