Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
ÉconométrieL'économétrie est une branche de la science économique qui a pour objectif d'estimer et de tester les modèles économiques. L'économétrie en tant que discipline naît dans les années 1930 avec la création de la société d'économétrie par Irving Fisher et Ragnar Frisch (1930) et la création de la revue Econometrica (1933). Depuis lors, l'économétrie n'a cessé de se développer et de prendre une importance croissante au sein de la science économique. L'économétrie théorique se focalise essentiellement sur deux questions, l'identification et l'estimation statistique.
Paramètre de positionvignette|Animation de la fonction de densité d'une loi normale, en faisant varier la moyenne entre -5 et 5. La moyenne est un paramètre de position et ne fait que déplacer la courbe en forme de cloche. En théorie des probabilités et statistiques, un paramètre de position (ou de localisation) est, comme son nom l'indique, un paramètre qui régit la position d'une densité de probabilité. Si ce paramètre (scalaire ou vectoriel) est noté λ, la densité se présente formellement comme : où f représente en quelque sorte la densité témoin.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Modèle linéairevignette|Données aléatoires sous forme de points, et leur régression linéaire. Un modèle linéaire multivarié est un modèle statistique dans lequel on cherche à exprimer une variable aléatoire à expliquer en fonction de variables explicatives X sous forme d'un opérateur linéaire. Le modèle linéaire est donné selon la formule : où Y est une matrice d'observations multivariées, X est une matrice de variables explicatives, B est une matrice de paramètres inconnus à estimer et U est une matrice contenant des erreurs ou du bruit.
MoyenneEn mathématiques, la moyenne est un outil de calcul permettant de résumer une liste de valeurs numériques en un seul nombre réel, indépendamment de l’ordre dans lequel la liste est donnée. Par défaut, il s’agit de la moyenne arithmétique, qui se calcule comme la somme des termes de la liste, divisée par le nombre de termes. D’autres moyennes peuvent être plus adaptées selon les contextes. La moyenne est un des premiers indicateurs statistiques pour une série de nombres.
Statistique multivariéeEn statistique, les analyses multivariées ont pour caractéristique de s'intéresser à des lois de probabilité à plusieurs variables. Les analyses bivariées sont des cas particuliers à deux variables. Les analyses multivariées sont très diverses selon l'objectif recherché, la nature des variables et la mise en œuvre formelle. On peut identifier deux grandes familles : celle des méthodes descriptives (visant à structurer et résumer l'information) et celle des méthodes explicatives visant à expliquer une ou des variables dites « dépendantes » (variables à expliquer) par un ensemble de variables dites « indépendantes » (variables explicatives).
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Erreur de mesurevignette|upright|Mesurage avec une colonne de mesure. Une erreur de mesure, dans le langage courant, est Exemples usuels et fictifs d'après cette définition : L'indication d'une balance de ménage pour une masse de certifiée est de . L'erreur de mesure est de – ; La distance entre deux murs, donnée par un télémètre laser est de , valeur considérée ici comme exacte. La valeur mesurée, au même endroit, avec un mètre à ruban est de . L'erreur de mesure, avec le mètre à ruban, est de ou ; La différence sur 24 heures de temps entre une pendule radio pilotée et une montre bracelet est de .
Probabilitévignette|Quatre dés à six faces de quatre couleurs différentes. Les six faces possibles sont visibles. Le terme probabilité possède plusieurs sens : venu historiquement du latin probabilitas, il désigne l'opposé du concept de certitude ; il est également une évaluation du caractère probable d'un événement, c'est-à-dire qu'une valeur permet de représenter son degré de certitude ; récemment, la probabilité est devenue une science mathématique et est appelée théorie des probabilités ou plus simplement probabilités ; enfin une doctrine porte également le nom de probabilisme.