Couvre le concept d'échantillonnage, le théorème d'échantillonnage, la reconstruction du signal et la conversion des signaux analogiques en signaux numériques.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.
Explore les signaux filtrants avec un filtre moyen mobile et le processus d'échantillonnage, soulignant l'importance de la reconstruction des signaux à partir des échantillons.
Couvre l'échantillonnage, la validation croisée, la quantification des performances, la détermination optimale du modèle, la détection des surajustements et la sensibilité de classification.