Concepts associés (5)
Fonction gamma incomplète
En analyse mathématique, il existe plusieurs définitions de fonctions gamma incomplètes : pour un paramètre complexe a de partie réelle strictement positive, La dérivée de la fonction gamma incomplète Γ(a, x) par rapport à x est l'opposée de l'intégrande de sa définition intégrale : La dérivée par rapport au paramètre a est donnée par et la dérivée seconde par où la fonction T(m, a, x) est un cas particulier de la Ce cas particulier possède des propriétés internes de fermeture qui lui sont propres parce qu'
Fonction d'erreur
thumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
Intégrale trigonométrique
En mathématiques, les intégrales trigonométriques sont une famille d'intégrales basées sur les fonctions trigonométriques. Sinus intégral Il existe deux fonctions sinus intégrales : On peut remarquer que l'intégrande sin(t)/t est la fonction sinus cardinal, et la fonction de Bessel sphérique d'ordre 0. Puisque sinc est une fonction entière paire (holomorphe sur tout le plan complexe), Si est entière, impaire, et l'intégrale dans sa définition peut être calculée le long de tout chemin reliant les extrémités.
Fonction élémentaire
En mathématiques, une fonction élémentaire est une fonction d'une variable construite à partir d'un nombre fini d'exponentielles, logarithmes, constantes, et racines n-ièmes par composition et combinaisons utilisant les quatre opérations élémentaires (+ – × ÷). En permettant à ces fonctions (et les constantes) d'être complexes, les fonctions trigonométriques et leurs réciproques sont élémentaires. Les fonctions élémentaires ont été d'abord introduites par Joseph Liouville dans une série de publications de 1833 à 1841.
Primitive
En mathématiques, une primitive d’une fonction réelle (ou holomorphe) f est une fonction F dont f est la dérivée : Il s’agit donc d’un antécédent pour l’opération de dérivation. La détermination d’une primitive sert d’abord au calcul des intégrales de fonctions continues sur un segment, en application du théorème fondamental de l'analyse.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.