Explore le cadre de la théorie de la décision en théorie statistique, considérant les statistiques comme un jeu aléatoire avec des concepts clés tels que la recevabilité, les règles minimax et les règles Bayes.
Explore l'inférence des hypothèses pour les estimands statistiques dans les modèles linéaires généralisés, en mettant l'accent sur des approches robustes et génériques.
Couvre le lien entre les modèles statistiques et les théories de champ conformes unitaires, en se concentrant sur les points critiques et le rôle des champs locaux.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Plonge dans l'homogénéisation dans les matériaux composites, en dérivant des limites rigoureuses et en discutant des paramètres statistiques et des microstructures.