Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les théories linéaires et membranaires des récipients sous pression, la géométrie différentielle des surfaces et la réduction de la dimensionnalité de la 3D à la 2D.
Explore la flexion, la rigidité et la courbure de la poutre dans les systèmes mécaniques à l'aide de lames extraites de l'OCR lors de la session printemps 2021 de l'EPFL.
Explore les propriétés géométriques des paraboles et des hyperboloïdes en architecture, en mettant l'accent sur leurs implications de conception et leurs applications pratiques.