Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Représentation fondamentaleIn representation theory of Lie groups and Lie algebras, a fundamental representation is an irreducible finite-dimensional representation of a semisimple Lie group or Lie algebra whose highest weight is a fundamental weight. For example, the defining module of a classical Lie group is a fundamental representation. Any finite-dimensional irreducible representation of a semisimple Lie group or Lie algebra can be constructed from the fundamental representations by a procedure due to Élie Cartan.
E6 (mathématiques)En mathématiques, E6 est le nom d'un groupe de Lie ; son algèbre de Lie est notée . Il s'agit de l'un des cinq groupes de Lie complexes de type exceptionnel. E6 est de rang 6 et de dimension 78. Le groupe fondamental de sa forme compacte est le groupe cyclique Z3 et son groupe d'automorphismes est le groupe cyclique Z2. Sa représentation fondamentale est de dimension complexe 27. Sa représentation duale est également de dimension 27. Une certaine forme non compacte réelle de E6 est le groupe des collinéations du plan projectif octonionique OP2, ou plan de Cayley.
E7 (mathématiques)En mathématiques, E7 est le nom d'un groupe de Lie complexe de type exceptionnel. Son algèbre de Lie est notée . E7 est de rang 7 et de dimension 133. Le groupe fondamental de sa forme compacte est le groupe cyclique Z2. sa représentation fondamentale est de dimension 56. La forme compacte réelle de E7 est le groupe d'isométries d'une variété riemannienne de dimension 64 appelée plan projectif quateroctionique. Ce nom vient du fait qu'il peut être construit en utilisant une algèbre qui est construite comme produit tensoriel des quaternions avec les octonions.
Cartan matrixIn mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. A (symmetrizable) generalized Cartan matrix is a square matrix with integral entries such that For diagonal entries, . For non-diagonal entries, . if and only if can be written as , where is a diagonal matrix, and is a symmetric matrix.
Groupe de type de LieEn mathématiques, un groupe de type de Lie G(k) est un groupe (non nécessairement fini) de points rationnels d'un groupe algébrique linéaire réductif G à valeur dans le corps commutatif k. La classification des groupes simples finis montre que les groupes de types de Lie finis forment l'essentiel des groupes finis simples. Des cas particuliers incluent les groupes classiques, les groupes de Chevalley, les groupes de Steinberg et les groupes de Suzuki-Ree.
E8 latticeIn mathematics, the E_8 lattice is a special lattice in R^8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E_8 root system. The norm of the E_8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H.
Indefinite orthogonal groupIn mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1.
TrialityIn mathematics, triality is a relationship among three vector spaces, analogous to the duality relation between dual vector spaces. Most commonly, it describes those special features of the Dynkin diagram D4 and the associated Lie group Spin(8), the double cover of 8-dimensional rotation group SO(8), arising because the group has an outer automorphism of order three. There is a geometrical version of triality, analogous to duality in projective geometry. Of all simple Lie groups, Spin(8) has the most symmetrical Dynkin diagram, D4.
Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.