Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
Dégénérescence (théorie des graphes)En théorie des graphes, la dégénérescence est un paramètre associé à un graphe non orienté. Un graphe est k-dégénéré si tout sous-graphe contient un nœud de degré inférieur ou égal à k, et la dégénérescence d'un graphe est le plus petit k tel qu'il est k-dégénéré. On peut de façon équivalente définir le paramètre en utilisant un ordre sur les sommets (appelé ordre de dégénérescence) tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus k. On parle alors parfois de nombre de marquage.
Graphe biparti completEn théorie des graphes, un graphe est dit biparti complet (ou encore est appelé une biclique) s'il est biparti et chaque sommet du premier ensemble est relié à tous les sommets du second ensemble. Plus précisément, il existe une partition de son ensemble de sommets en deux sous-ensembles et telle que chaque sommet de est relié à chaque sommet de . Si le premier ensemble est de cardinal m et le second ensemble est de cardinal n, le graphe biparti complet est noté . Si m = 1, le graphe complet biparti K1,n est une étoile et est noté .
Pseudo-forêtvignette|upright=1.2 |Une 1-forêt (une pseudo-forêt maximale), composée de trois 1-arbres En théorie des graphes, une pseudo-forêt est un graphe non orienté, ou même un multigraphe dans lequel chaque composante connexe possède au plus un cycle. De manière équivalente, une pseudo-forêt est un graphe dans lequel deux cycles ne sont pas connectés par une chaîne. Un pseudo-arbre est une pseudo-forêt connexe. Les noms évoquent l'analogie avec les arbres et les forêts plus couramment étudiés : un arbre est un graphe connexe sans cycle ; une forêt est une union disjointe d'arbres.
ArboricitéEn théorie des graphes, l'arboricité (arboricity en anglais) d'un graphe non orienté est le nombre minimum de forêts nécessaires pour couvrir toutes les arêtes. Il en existe plusieurs variantes avec des couvertures par des arbres particuliers, comme les étoiles. C'est une mesure de la densité d'un graphe : une grande arboricité correspond à un graphe dense alors qu'une faible arboricité correspond à un graphe assez proche d'un arbre donc de faible densité.
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Graphe completEn théorie des graphes, un graphe complet est un graphe simple dont tous les sommets sont adjacents deux à deux, c'est-à-dire que tout couple de sommets disjoints est relié par une arête. Si le graphe est orienté, on dit qu'il est complet si chaque paire de sommets est reliée par exactement deux arcs (un dans chaque sens). Un graphe complet est un graphe dont tous les sommets sont adjacents. À isomorphisme près, il n'existe qu'un seul graphe complet non orienté d'ordre n, que l'on note .
Mineur (théorie des graphes)La notion de mineur d'un graphe est un concept de théorie des graphes. Il a été défini et étudié par Robertson et Seymour dans une série d'articles intitulée Graph minors (I à XXIII), publiée dans le Journal of Combinatorial Theory entre 1983 et 2011. Soit un graphe non orienté fini. Un graphe est un mineur de s'il peut être obtenu en contractant des arêtes d'un sous-graphe de .
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.