Résumé
thumb|150px En physique, la précession de Larmor (nommée d'après Joseph Larmor) est la précession du moment magnétique des électrons, des noyaux atomiques ou des atomes soumis à un champ magnétique. Le champ magnétique exerce un couple sur le moment magnétique, où est le couple, est le moment magnétique dipolaire, est le vecteur moment cinétique, est le champ magnétique, est le produit vectoriel, et est le rapport gyromagnétique donnant la constante de proportionnalité entre le moment magnétique et le moment angulaire. Le vecteur moment cinétique vérifie l'équation : et subit donc une précession autour de la direction du champ magnétique externe, avec une vitesse angulaire (ou pulsation) connue sous le nom de fréquence de Larmor, où est la pulsation, est le rapport gyromagnétique, est l'intensité du champ magnétique et est le facteur de Landé (égal à 1, sauf en physique quantique). Chaque isotope a une fréquence de Larmor unique pour la spectroscopie RMN, dont voici une table. La précession du spin de l'électron dans un champ électromagnétique est décrite par l'équation de Bargmann-Michel-Telegdi (BMT) où , , , et sont respectivement le quadri-vecteur de polarisation, la charge, la masse, et le moment magnétique ; est la quadri-vitesse de l'électron, , , et est le tenseur de force du champ électromagnétique. Utilisant les équations du mouvement, on peut réécrire le premier terme du membre de droite , où est la quadri-accélération. Ce terme décrit un et correspond à la précession de Thomas. Le second terme est associé à la précession de Larmor. En 1935, un article publié par Lev Landau et Evgueni Lifchits prédisait l'existence de la résonance ferromagnétique de la précession de Larmor, qui fut vérifiée expérimentalement et indépendamment par J. H. E. Griffiths (Grande-Bretagne) et E. K. Zavoiskij (URSS) en 1946. La précession de Larmor joue un rôle important en résonance magnétique nucléaire, en résonance paramagnétique électronique et en . Pour calculer le spin d'une particule dans un champ magnétique, on doit aussi prendre en compte la précession de Thomas.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.