Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les opérations matricielles, les transformations de Fourier, les modèles gaussiens et les représentations de signaux en utilisant des méthodes algébriques.
Introduit le traitement de flux de données, couvrant le traitement par lots vs le traitement de flux, des informations en temps réel, des applications, des défis et des outils comme Apache Kafka et Spark Streaming.
Couvre le traitement de flux de données avec Apache Kafka et Spark, y compris le temps d'événement vs le temps de traitement, les opérations de traitement de flux, et les jointures de flux.
Couvre les bases du traitement des flux de données, y compris des outils comme Apache Storm et Kafka, des concepts clés tels que le temps d'événement et les opérations de fenêtre, et les défis du traitement des flux.
Couvre les fondamentaux du traitement des flux de données, y compris les informations en temps réel, les applications de l'industrie, et les exercices pratiques sur Kafka et Spark Streaming.
Étudier l'évolutivité, la persistance et la cohérence des systèmes de bases de données et des applications à forte intensité de données, en soulignant l'importance de l'état et des compromis dans la gestion des données.