Concepts associés (43)
Interval estimation
In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method); less common forms include likelihood intervals and fiducial intervals.
Point estimation
In statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Indicateur de dispersion
En statistique, un indicateur de dispersion mesure la variabilité des valeurs d’une série statistique. Il est toujours positif et d’autant plus grand que les valeurs de la série sont étalées. Les plus courants sont la variance, l'écart-type et l'écart interquartile. Ces indicateurs complètent l’information apportée par les indicateurs de position ou de tendance centrale, mesurés par la moyenne ou la médiane. Dans la pratique, c'est-à-dire dans l'industrie, les laboratoires ou en métrologie, où s'effectuent des mesurages, cette dispersion est estimée par l'écart type.
Variance (mathématiques)
vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Ronald Aylmer Fisher
Sir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive.
Échantillonnage (statistiques)
thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Réplication (statistique)
In engineering, science, and statistics, replication is the repetition of an experimental condition so that the variability associated with the phenomenon can be estimated. ASTM, in standard E1847, defines replication as "... the repetition of the set of all the treatment combinations to be compared in an experiment. Each of the repetitions is called a replicate." Replication is not the same as repeated measurements of the same item: they are dealt with differently in statistical experimental design and data analysis.
Coverage probability
In statistics, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. The fixed degree of certainty pre-specified by the analyst, referred to as the confidence level or confidence coefficient of the constructed interval, is effectively the nominal coverage probability of the procedure for constructing confidence intervals.
Credible interval
In Bayesian statistics, a credible interval is an interval within which an unobserved parameter value falls with a particular probability. It is an interval in the domain of a posterior probability distribution or a predictive distribution. The generalisation to multivariate problems is the credible region. Credible intervals are analogous to confidence intervals and confidence regions in frequentist statistics, although they differ on a philosophical basis: Bayesian intervals treat their bounds as fixed and the estimated parameter as a random variable, whereas frequentist confidence intervals treat their bounds as random variables and the parameter as a fixed value.
Resampling (statistics)
In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.