Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Algorithme de parcours en largeurL'algorithme de parcours en largeur (ou BFS, pour Breadth-First Search en anglais) permet le parcours d'un graphe ou d'un arbre de la manière suivante : on commence par explorer un nœud source, puis ses successeurs, puis les successeurs non explorés des successeurs, etc. L'algorithme de parcours en largeur permet de calculer les distances de tous les nœuds depuis un nœud source dans un graphe non pondéré (orienté ou non orienté). Il peut aussi servir à déterminer si un graphe non orienté est connexe.
Algorithme de parcours en profondeurL'algorithme de parcours en profondeur (ou parcours en profondeur, ou DFS, pour Depth-First Search) est un algorithme de parcours d'arbre, et plus généralement de parcours de graphe. Il se décrit naturellement de manière récursive. Son application la plus simple consiste à déterminer s'il existe un chemin d'un sommet à un autre. Pour les graphes non orientés, le parcours en profondeur correspond à la méthode intuitive qu'on utilise pour trouver la sortie d'un labyrinthe sans tourner en rond.
Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
Algorithme de recherche best-firstLa recherche best-first (littéralement : le meilleur en premier) est un algorithme de recherche qui parcourt un graphe en explorant le nœud le plus "prometteur" selon une règle spécifique. Judea Pearl décrit la recherche best-first comme l'estimation de la qualité d'un nœud n par une "fonction heuristique d'évaluation qui, en général, peut dépendre de la description de n, de l'état d'arrivée, des informations amassées par l'algorithme au moment de l'évaluation et, surtout, de connaissances supplémentaires à propos du problème".
Problème de satisfaction de contraintesLes problèmes de satisfaction de contraintes ou CSP (Constraint Satisfaction Problem) sont des problèmes mathématiques où l'on cherche des états ou des objets satisfaisant un certain nombre de contraintes ou de critères. Les CSP font l'objet de recherches intenses à la fois en intelligence artificielle et en recherche opérationnelle. De nombreux CSP nécessitent la combinaison d'heuristiques et de méthodes d'optimisation combinatoire pour être résolus en un temps raisonnable.
Arbre de jeuEn théorie des jeux, un arbre de jeu est un arbre (au sens de la théorie des graphes) dont les nœuds sont des positions dans un jeu et dont les arêtes sont des mouvements. L'arbre de jeu complet est l'arbre de jeu commençant à la position initiale et contenant tous les mouvements possibles depuis chaque position. vignette| Les deux premiers de l'arbre de jeu pour le tic-tac-toe. Le diagramme ci-contre montre comment coder dans une représentation arborescente le premier tour de jeu au tic-tac-toe : ce sont les deux premiers niveaux dans l'arborescence, la racine représentant la position initiale (une grille vide, en l'occurrence).
Arbre (théorie des graphes)En théorie des graphes, un arbre est un graphe acyclique et connexe. Sa forme évoque en effet la ramification des branches d'un arbre. Par opposition aux arbres simples, arbres binaires, ou arbres généraux de l'analyse d'algorithme ou de la combinatoire analytique, qui sont des plongements particuliers d'arbres (graphes) dans le plan, on appelle parfois les arbres (graphes) arbres de Cayley, car ils sont comptés par la formule de Cayley. Un ensemble d'arbres est appelé une forêt.
Arbre binaireEn informatique, un arbre binaire est une structure de données qui peut se représenter sous la forme d'une hiérarchie dont chaque élément est appelé nœud, le nœud initial étant appelé racine. Dans un arbre binaire, chaque élément possède au plus deux éléments fils au niveau inférieur, habituellement appelés gauche et droit. Du point de vue de ces éléments fils, l'élément dont ils sont issus au niveau supérieur est appelé père. Au niveau le plus élevé, niveau 0, il y a un nœud racine.