Comparison sortA comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with: if a ≤ b and b ≤ c then a ≤ c (transitivity) for all a and b, a ≤ b or b ≤ a (connexity). It is possible that both a ≤ b and b ≤ a; in this case either may come first in the sorted list.
File de prioritéEn informatique, une file de priorité est un type abstrait élémentaire sur laquelle on peut effectuer trois opérations : insérer un élément ; extraire l'élément ayant la plus grande clé ; tester si la file de priorité est vide ou pas. Ainsi, elle permet d'implémenter efficacement des planificateurs de tâches, où un accès rapide aux tâches d'importance maximale est souhaité. On la retrouve par exemple dans les ordonnanceurs des systèmes d'exploitation, notamment le noyau Linux.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Tas (informatique)vignette|Un exemple de tas. Il contient 9 éléments. L'élément le plus prioritaire (100) est à la racine. En informatique, un tas (ou monceau au Canada, heap en anglais) est une structure de données de type arbre qui permet de retrouver directement l'élément que l'on veut traiter en priorité. C'est un arbre binaire presque complet ordonné. Un arbre binaire est dit presque complet si tous ses niveaux sont remplis, sauf éventuellement le dernier, qui doit être rempli sur la gauche (cf. Contre-exemples).
Tri par sélectionLe tri par sélection (ou tri par extraction) est un algorithme de tri par comparaison. Cet algorithme est simple, mais considéré comme inefficace car il s'exécute en temps quadratique en le nombre d'éléments à trier, et non en temps pseudo linéaire. Sur un tableau de n éléments (numérotés de 0 à n-1 , attention un tableau de 5 valeurs (5 cases) sera numéroté de 0 à 4 et non de 1 à 5), le principe du tri par sélection est le suivant : rechercher le plus petit élément du tableau, et l'échanger avec l'élément d'indice 0 ; rechercher le second plus petit élément du tableau, et l'échanger avec l'élément d'indice 1 ; continuer de cette façon jusqu'à ce que le tableau soit entièrement trié.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Diviser pour régner (informatique)thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Best, worst and average caseIn computer science, best, worst, and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, i.e. time complexity, but could also be memory or some other resource. Best case is the function which performs the minimum number of steps on input data of n elements. Worst case is the function which performs the maximum number of steps on input data of size n.
SortingSorting refers to ordering data in an increasing or decreasing manner according to some linear relationship among the data items. ordering: arranging items in a sequence ordered by some criterion; categorizing: grouping items with similar properties. Ordering items is the combination of categorizing them based on equivalent order, and ordering the categories themselves. In , arranging in an ordered sequence is called "sorting". Sorting is a common operation in many applications, and efficient algorithms have been developed to perform it.
In-place algorithmIn computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place. In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers.