Première forme fondamentaleLa première forme fondamentale est un outil utilisé dans l'étude des surfaces de l'espace euclidien. Elle se calcule en chaque point P de la surface Σ et s'interprète comme une écriture formelle du produit scalaire euclidien usuel en restriction au plan tangent TPΣ. On note la première forme fondamentale par la lettre romaine I. La première forme fondamentale est susceptible de généralisations dans le cadre de la géométrie riemannienne, c'est-à-dire des variétés (espaces courbes modelés localement sur l'espace euclidien) pour étudier l'inclusion d'une variété riemannienne dans une autre, ou plus généralement les façons d'appliquer une variété riemannienne dans une autre.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Pseudosphèrethumb|right|La pseudosphère étudiée par Eugenio Beltrami En géométrie, le terme de pseudosphère est utilisé pour décrire diverses surfaces dont la courbure de Gauss est constante et négative. Selon le contexte, il peut se référer soit à une surface théorique de courbure négative (une variété riemannienne), soit à une surface effectivement réalisée de l'espace, telle qu'une tractricoïde. Dans son acception la plus générale, une pseudosphère de rayon R est une surface (complète et simplement connexe) de courbure totale en tout point égale à , par analogie à la sphère de rayon R dont la courbure est .
Application de GaussEn géométrie différentielle classique, l'application de Gauss est une application naturelle différentiable sur une surface de , à valeurs dans la sphère unité , et dont la différentielle permet d'accéder à la seconde forme fondamentale. Elle tient son nom du mathématicien allemand Carl Friedrich Gauss. Soit une surface orientée de classe de . Pour un point de , il existe un unique vecteur normal unitaire compatible avec l'orientation de .
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.