Concepts associés (26)
Point col
En mathématiques, un point col ou point-selle () d'une fonction f définie sur un produit cartésien X × Y de deux ensembles X et Y est un point tel que : atteint un maximum en sur Y ; et atteint un minimum en sur X. Certains auteurs inversent les maximum et minimum ( a un minimum en et a un maximum en ), mais cela ne modifie pas qualitativement les résultats (on peut revenir au cas présent par un changement de variables). Le terme point-selle fait référence à la forme de selle de cheval que prend le graphe de la fonction lorsque X et Y sont des intervalles de .
Courbure moyenne
En mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe.
Eugenio Beltrami
Eugenio Beltrami (1835-1900), appelé Eugène Beltrami en français, est un mathématicien et physicien italien. Il est connu pour ses travaux sur l'élasticité, l'hydrodynamique, l’électricité et le magnétisme, mais son nom est surtout associé à l'histoire de la géométrie, et au rôle fondamental qu'il joua dans l'affermissement des fondements de la géométrie non euclidienne. Sa famille paternelle comptait des artistes, dont son père, un peintre passionné de miniatures.
Angular defect
In geometry, the (angular) defect (or deficit or deficiency) means the failure of some angles to add up to the expected amount of 360° or 180°, when such angles in the Euclidean plane would. The opposite notion is the excess. Classically the defect arises in two ways: the defect of a vertex of a polyhedron; the defect of a hyperbolic triangle; and the excess also arises in two ways: the excess of a toroidal polyhedron.
Hélicoïde
Un hélicoïde est une surface s'appuyant sur une hélice et sur un axe. Elle fut découverte par Jean-Baptiste Marie Meusnier de La Place en 1776. C'est, avec le plan, la seule surface minimale réglée (c'est-à-dire pouvant être obtenue par déplacement d'une droite dans l'espace). Paramétrage : C'est par ailleurs la seule famille de solutions de la forme à l'équation locale d'Euler-Lagrange qui caractérise les surfaces minimales. On a longtemps cru que la caténoïde, l’hélicoïde et le plan étaient les seules surfaces minimales sans intersections.
Systole (mathématiques)
Dans un espace métrique compact, la systole est la longueur minimale d'un lacet non contractile, c'est-à-dire d'une courbe fermée qu'on ne peut déformer continûment pour l'amener en un point. En géométrie des nombres, la systole d'un réseau dans un espace euclidien désigne la norme du plus petit vecteur non nul de ce réseau. Cette notion intervient en particulier dans le , également connu sous le nom de « critère de Mahler ». La systole est donc la longueur minimum d'un lacet représentant une classe non nulle d'homologie première du tore quotient du réseau.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.