MATH-511: Number theory II.a - Modular formsIn this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
MATH-670: The theta correspondenceIn the course we will discuss some introductory aspects of the local/global theta correspondence for automorphic forms/representation for various dual pairs. One of the objectives will be to prove Wal
MATH-489: Number theory II.c - CryptographyThe goal of the course is to introduce basic notions from public key cryptography (PKC) as well as basic number-theoretic methods and algorithms for cryptanalysis of protocols and schemes based on PKC
MATH-417: Number theory II.b - selected topicsThis year's topic is "Additive combinatorics and applications." We will introduce various methods from additive combinatorics, establish the sum-product theorem over finite fields and derive various a
MSE-369: Finite element theory and practiceL'objectif du cours est de comprendre la méthode des éléments finis i.e. les formulations variationnelles faibles et fortes et les schémas de résolution en espace et en temps. La seconde partie du sem
MATH-643: Applied l-adic cohomologyIn this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
MATH-680: Monstrous moonshineThe monstrous moonshine is an unexpected connection between the Monster group and modular functions. In the course we will explain the statement of the conjecture and study the main ideas and concepts
MATH-803: Young Algebraists' Conference 2021The summer school comprises of two mini-courses with the following topics:
- Introduction to the modular representation theory of finite groups
- Schur-Weyl duality and categorification