Pavage du planthumb|Pavage constitué de triangles équilatéraux et d'hexagones, dit pavage trihexagonal. thumb|Pavage hexagonal de tomettes provençales en terre cuite. Un pavage du plan est un ensemble de portions du plan, par exemple des polygones, dont l'union est le plan tout entier, sans recouvrement. Plus précisément, c'est une partition du plan euclidien par des éléments d'un ensemble fini, appelés « carreaux » (plus précisément, ce sont des compacts d’intérieur non vide).
Uniform tilings in hyperbolic planeIn hyperbolic geometry, a uniform hyperbolic tiling (or regular, quasiregular or semiregular hyperbolic tiling) is an edge-to-edge filling of the hyperbolic plane which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the tiling has a high degree of rotational and translational symmetry.
Cerf-volant (géométrie)En géométrie, un cerf-volant est un quadrilatère dont une des diagonales est un axe de symétrie (ou — ce qui est équivalent — un quadrilatère formé de deux paires de côtés adjacents égaux). Les diagonales peuvent se couper à l'intérieur (cerf-volant convexe) ou à l'extérieur (« pointe de flèche » ou cerf-volant non convexe). Ceci contraste avec un parallélogramme, où les côtés égaux sont opposés. L'objet géométrique est nommé en référence au cerf-volant que l'on fait voler, qui a, dans son aspect le plus simple, la forme d'un cerf-volant convexe.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Pavage carréLe pavage carré est, en géométrie, un pavage du plan euclidien constitué de carrés. C'est l'un des trois pavages réguliers du plan euclidien, avec le pavage triangulaire et le pavage hexagonal. Le pavage carré possède un symbole de Schläfli de {4,4}, signifiant que chaque sommet est entouré par 4 carrés. Les symétries du pavage carré sont les symétries du carré, les translations, et leurs combinaisons. Elles forment un groupe de symétrie dénommé p4m. Les symétries du carré forment un sous-groupe, dénommé Groupe diédral d'ordre 8.
HexagoneUn hexagone, du grec et , est un polygone à six sommets et six côtés. Un hexagone peut être régulier ou irrégulier. Un hexagone régulier est un hexagone convexe dont les six côtés ont tous la même longueur. Les angles internes d'un hexagone régulier sont tous de 120°. Comme les carrés et les triangles équilatéraux, les hexagones réguliers permettent un pavage régulier du plan. Les pavages carrés et hexagonaux sont notamment utilisés pour réaliser des dallages.