Computational finance is a branch of applied computer science that deals with problems of practical interest in finance. Some slightly different definitions are the study of data and algorithms currently used in finance and the mathematics of computer programs that realize financial models or systems.
Computational finance emphasizes practical numerical methods rather than mathematical proofs and focuses on techniques that apply directly to economic analyses. It is an interdisciplinary field between mathematical finance and numerical methods. Two major areas are efficient and accurate computation of fair values of financial securities and the modeling of stochastic time series.
The birth of computational finance as a discipline can be traced to Harry Markowitz in the early 1950s. Markowitz conceived of the portfolio selection problem as an exercise in mean-variance optimization. This required more computer power than was available at the time, so he worked on useful algorithms for approximate solutions. Mathematical finance began with the same insight, but diverged by making simplifying assumptions to express relations in simple closed forms that did not require sophisticated computer science to evaluate.
In the 1960s, hedge fund managers such as Ed Thorp and Michael Goodkin (working with Harry Markowitz, Paul Samuelson and Robert C. Merton) pioneered the use of computers in arbitrage trading. In academics, sophisticated computer processing was needed by researchers such as Eugene Fama in order to analyze large amounts of financial data in support of the efficient-market hypothesis.
During the 1970s, the main focus of computational finance shifted to options pricing and analyzing mortgage securitizations. In the late 1970s and early 1980s, a group of young quantitative practitioners who became known as "rocket scientists" arrived on Wall Street and brought along personal computers. This led to an explosion of both the amount and variety of computational finance applications.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Explore la théorie du portefeuille en mettant l'accent sur la stratégie de parité des risques, en discutant de l'allocation d'actifs proportionnelle à l'inverse de la volatilité et en comparant différents portefeuilles diversifiés.
Explore les méthodes d'analyse financière, en soulignant l'importance des comparaisons de ratios et des évaluations de tendances dans l'évaluation de la performance de l'entreprise.
The aim of the course is to apply the theory of martingales in the context of mathematical finance. The course provides a detailed study of the mathematical ideas that are used in modern financial mat
The course applies finance tools and concepts to the world of venture capital and financing of projects in high-growth industries. Students are introduced to all institutional aspects of the venture c
This is a doctoral level course introducing students to important topics in international finance. It also covers aspects of the recent financial crisis, such as market contagions, regulatory arbitrag
Les mathématiques financières (aussi nommées finance quantitative) sont une branche des mathématiques appliquées ayant pour but la modélisation, la quantification et la compréhension des phénomènes régissant les opérations financières d'une certaine durée (emprunts et placements / investissements) et notamment les marchés financiers. Elles font jouer le facteur temps et utilisent principalement des outils issus de l'actualisation, de la théorie des probabilités, du calcul stochastique, des statistiques et du calcul différentiel.
En finance, l'analyse quantitative est l'utilisation de mathématiques financières, souvent dérivées des probabilités, pour mettre au point et utiliser des modèles permettant aux gestionnaires de fonds et autres spécialistes financiers de s'attaquer à deux problèmes : mieux évaluer la valeur des actifs financiers, et surtout leurs dérivés. Ces dérivés peuvent être des produits comme les warrants, les certificats ou tout autre type de dérivé ou d'option (contrats Futures sur matières premières, indices, etc.
Le trading algorithmique, aussi appelé trading automatisé ou trading automatique, boîte noire de négociation (en anglais : black-box trading), effectué par des robots de trading ou robots traders, est une forme de trading avec utilisation de plates-formes électroniques pour la saisie des ordres de bourse en laissant un algorithme décider des différents aspects de l'ordre, tel que l'instant d'ouverture ou de clôture (le timing), le prix ou le volume de l'ordre et ceci, dans de nombreux cas, sans la moindre in
In this thesis we present three closed form approximation methods for portfolio valuation and risk management.The first chapter is titled ``Kernel methods for portfolio valuation and risk management'', and is a joint work with Damir Filipovi'c (SFI and EP ...
Data-driven approaches have been applied to reduce the cost of accurate computational studies on materials, by using only a small number of expensive reference electronic structure calculations for a representative subset of the materials space, and using ...
Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...