Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
Plan de CayleyEn mathématiques, le plan de Cayley (ou plan projectif octonionique) P2(O) est un plan projectif sur les octonions. Le plan de Cayley a été découvert en 1933 par la mathématicienne allemande Ruth Moufang et porte le nom d'Arthur Cayley pour son article de 1845 décrivant les octonions. Dans le plan de Cayley, les droites et les points peuvent être définis de manière naturelle de sorte à former un espace projectif de dimension deux, c'est-à-dire un plan projectif. C'est un plan non arguésien, c'est-à-dire que le théorème de Desargues n'est pas vérifié.
Real form (Lie theory)In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0: The notion of a real form can also be defined for complex Lie groups. Real forms of complex semisimple Lie groups and Lie algebras have been completely classified by Élie Cartan. Using the Lie correspondence between Lie groups and Lie algebras, the notion of a real form can be defined for Lie groups.
Lie group–Lie algebra correspondenceIn mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and (see real coordinate space and the circle group respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other.
Élie CartanÉlie Joseph Cartan ( – ) est un mathématicien français qui a effectué des travaux fondamentaux dans la théorie des groupes de Lie et leurs applications géométriques. Il a également contribué de manière significative à la physique mathématique, à la géométrie différentielle, aux équations différentielles, à la théorie des groupes et à la mécanique quantique. Il est largement considéré comme l'un des plus grands mathématiciens du . Il a défendu avec succès sa thèse sur les groupes de Lie à l'École normale supérieure en 1894.
Indefinite orthogonal groupIn mathematics, the indefinite orthogonal group, O(p, q) is the Lie group of all linear transformations of an n-dimensional real vector space that leave invariant a nondegenerate, symmetric bilinear form of signature (p, q), where n = p + q. It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is n(n − 1)/2. The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1.