It is proved that the continuous bounded cohomology of SL2(k) vanishes in all positive degrees whenever k is a non-Archimedean local field. This holds more generally for boundary-transitive groups of tree automorphisms and implies low degree vanishing for ...
Let P be a partially ordered set. If the Boolean lattice (2[n],⊂) can be partitioned into copies of P for some positive integer n, then P must satisfy the following two trivial conditions: (1) the size of P is a power of 2, (2) P has a unique maximal and m ...
Given a sequence of positive integers , let denote the family of all sequences of positive integers such that for all . Two families of sequences (or vectors), , are said to be -cross-intersecting if no matter how we select and , there are at least distinc ...
We study the Lonely Runner Conjecture, conceived by Jörg M. Wills in the 1960's: Given positive integers n_1, n_2, ... , n_k, there exists a positive real number t such that for all 1 \le j \le k the distance of t n_j to the nearest integer is at least 1 / ...
In the present thesis, we delve into different extremal and algebraic problems arising from combinatorial geometry. Specifically, we consider the following problems. For any integer n≥3, we define e(n) to be the minimum positive integer such that an ...
For positive integers w and k, two vectors A and B from Z(w) are called k-crossing if there are two coordinates i and j such that A[i] - B[i] >= k and B[j] - A[j] >= k. What is the maximum size of a family of pairwise 1-crossing and pairwise non-k-crossing ...
This paper defines the problem of Scalable Secure computing in a Social network: we call it the S-3 problem. In short, nodes, directly reflecting on associated users, need to compute a symmetric function f : V-n -> U of their inputs in a set of constant si ...
We extend the Leon verification system for Scala with support for bit-vector reasoning, thus addressing one of its fundamental soundness limitation with respect to the treatment of integers primitives. We leverage significant progresses recently achieved i ...
We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d, there is a constant such that whenever are n-element subsets of , we can find a point and subsets for every , each of size at least , suc ...
For any positive integers n≥3,r≥1 we present formulae for the number of irreducible polynomials of degree n over the finite field F2r where the coefficients of xn−1, xn−2 and xn−3 are zero. Our proofs involve coun ...