CongruumIn number theory, a congruum (plural congrua) is the difference between successive square numbers in an arithmetic progression of three squares. That is, if , , and (for integers , , and ) are three square numbers that are equally spaced apart from each other, then the spacing between them, , is called a congruum. The congruum problem is the problem of finding squares in arithmetic progression and their associated congrua. It can be formalized as a Diophantine equation: find integers , , and such that When this equation is satisfied, both sides of the equation equal the congruum.
Dernier théorème de FermatEn mathématiques, et plus précisément en théorie des nombres, le dernier théorème de Fermat, ou grand théorème de Fermat, ou depuis sa démonstration théorème de Fermat-Wiles, s'énonce comme suit : Énoncé par Pierre de Fermat d'une manière similaire dans une note marginale de son exemplaire d'un livre de Diophante, il a cependant attendu plus de trois siècles une preuve publiée et validée, établie par le mathématicien britannique Andrew Wiles en 1994.
Équation de Fermat généraliséeEn arithmétique, l'équation de Fermat généralisée est l'équationoù sont des entiers non nuls, sont des entiers non nuls premiers entre eux et sont entiers. Comme son nom le laisse transparaître, cette équation généralise l'équation dont le fameux dernier théorème de Fermat établit l'impossibilité quand . À l'instar de celui-ci avant sa résolution, son principal intérêt réside aujourd'hui dans la stimulation du développement des nouveaux outils mathématiques nécessaires à son appréhension.
Triplet pythagoricienvignette|Animation illustrant le plus simple triplet pythagoricien : 32 + 42 = 52. En arithmétique, un triplet pythagoricien ou triplet de Pythagore est un triplet (a, b, c) d'entiers naturels non nuls vérifiant la relation de Pythagore : . Le triplet pythagoricien le plus connu est (3, 4, 5). À tout triplet pythagoricien est associé un triangle de côtés entiers a, b, c, forcément rectangle d’hypoténuse c, ainsi qu'un rectangle de côtés entiers a, b, et de diagonale entière c.
Méthode de descente infinieLa méthode de descente infinie est un argument mathématique voisin du raisonnement par récurrence, mais aussi du raisonnement par l'absurde, qui utilise le fait qu'une suite d'entiers naturels strictement décroissante est nécessairement finie. Cette méthode repose sur l'une des propriétés des entiers naturels : « tout ensemble non vide d'entiers naturels possède un plus petit élément. » Soit P(n) une propriété faisant intervenir un entier naturel n. On cherche à démontrer que P(n) est fausse pour tout n.
Équation diophantiennevignette|Édition de 1670 des Arithmétiques de Diophante. Une équation diophantienne, en mathématiques, est une équation polynomiale à une ou plusieurs inconnues dont les solutions sont cherchées parmi les nombres entiers, éventuellement rationnels, les coefficients étant eux-mêmes également entiers. La branche des mathématiques qui s'intéresse à la résolution de telles équations s'est appelée longtemps l'analyse indéterminée avant de se fondre dans l'arithmétique ou la théorie des nombres.