GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Mathématiques mésopotamiennesthumb|250px|Photographie de la tablette YBC 7289 annotée. Les nombres écrits dans le système babylonien donnent la racine carrée de 2 avec quatre chiffres sexagésimaux significatifs, soit près de six chiffres décimaux :1 + 24/60 + 51/602 + 10/603 = 1,41421296... (crédit : Bill Casselman). Les mathématiques mésopotamiennes sont les mathématiques pratiquées par les peuples de l'ancienne Mésopotamie (dans l’Irak actuel), depuis l'époque des Sumériens jusqu'à la chute de Babylone en .
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Papyrus Rhindvignette|Un extrait du papyrus Rhind. vignette|Détail d'une des deux principales parties du papyrus Rhind, British Museum, EA 10057. Le papyrus Rhind est un célèbre papyrus de la Deuxième Période intermédiaire qui a été écrit par le scribe Ahmès. Son nom vient de l'Écossais Alexander Henry Rhind qui l'acheta en 1858 à Louxor, mais il aurait été découvert par des pilleurs sur le site de la ville voisine de Thèbes. Depuis 1865, il est conservé au British Museum (à Londres).
Larsavignette|droite|Carte de la Mésopotamie avec les frontières des États modernes, l'ancien tracé du littoral du golfe Persique et les sites des grandes cités antiques. vignette|droite|Localisation des principales cités de Mésopotamie à l'époque historique. Larsa (ou Larag ou Larak), qui est appelé aujourd'hui Tell Senkerah (en arabe : tall sankara, ar) en Irak, était une cité de Mésopotamie, capitale d'un royaume amorrite. Elle est située à quelque au sud-est des ruines d'Uruk.
Mathématiques indiennesLa chronologie des mathématiques indiennes s'étend de la civilisation de la vallée de l'Indus (-3300 à -1500) jusqu'à l'Inde moderne. Parmi les contributions des mathématiciens indiens au développement de la discipline, la plus féconde est certainement la numération décimale de position, appuyée sur des chiffres indiens, empruntés par les Arabes et qui se sont imposés dans le monde entier. Les Indiens ont maîtrisé le zéro, les nombres négatifs, les fonctions trigonométriques.
Mathématiques de la Grèce antiquevignette|right|250px|Illustration de la preuve d'Euclide du théorème de Pythagore. Les mathématiques de la Grèce antique sont les mathématiques développées en langue grecque, autour de la mer Méditerranée, durant les époques classique et hellénistique. Elles couvrent ainsi une période allant du jusqu'au de notre ère. Les mathématiques hellénistiques incluent toutes celles écrites en grec. Elles englobent donc les mathématiques égyptiennes et babyloniennes d'une grande partie de cette époque.
Équation du second degréEn mathématiques, une équation du second degré, ou équation quadratique, est une équation polynomiale de degré 2, c'est-à-dire qu'elle peut s'écrire sous la forme : Dans cette équation, x est l'inconnue les lettres a, b et c représentent les coefficients, avec a différent de 0. a est le coefficient quadratique, b est le coefficient linéaire, et c est un terme constant où le polynome est défini sur .