Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Produit scalaireEn mathématiques, et plus précisément en algèbre et en géométrie vectorielle, le produit scalaire est une opération algébrique s'ajoutant aux lois s'appliquant aux vecteurs. C'est une forme bilinéaire, symétrique, définie positive. À deux vecteurs, elle associe un scalaire, c'est-à-dire un nombre tel que ceux qui définissent cet espace vectoriel — réel pour un espace vectoriel réel. Si et sont deux vecteurs d'un espace vectoriel E sur le corps R des nombres réels, alors le produit scalaire de u par v est un scalaire (c'est-à-dire un élément de R), noté ∙ , , , ou .
Symbole de Levi-CivitaEn mathématiques, le symbole de Levi-Civita, noté ε (lettre grecque epsilon), est un objet antisymétrique d'ordre 3 qui peut être exprimé à partir du symbole de Kronecker : Ainsi, ne peut prendre que trois valeurs : –1, 0 ou 1. En dimension 3, on peut figurer le symbole de Levi-Civita comme suit : On remarque que si , et , alors représente une permutation et le symbole de Levi-Civita correspondant est sa signature.
AnisotropieLanisotropie (contraire d'isotropie) est la propriété d'être dépendant de la direction. Quelque chose d'anisotrope pourra présenter différentes caractéristiques selon son orientation. Un exemple simple est celui des lunettes de soleil polarisantes qui ne laissent pas passer la lumière selon la direction dans laquelle on les regarde. Ceci est aussi visible sur certains écrans d'ordinateurs plats qui n'affichent pas les mêmes couleurs : on dit que leur rayonnement est anisotrope.
Spineurvignette|Le cube peut tourner continument sans que les ficelles qui le retiennent s'emmêlent. Après un mouvement de 360°, la configuration a changé. Mais au bout de 720° on revient à la position initiale. Un cube "détaché" se comporte comme un vecteur ordinaire, le cube attaché comme un spineur. Formellement, un spineur est un élément d'un espace de représentation pour le groupe spinoriel.
Raising and lowering indicesIn mathematics and mathematical physics, raising and lowering indices are operations on tensors which change their type. Raising and lowering indices are a form of index manipulation in tensor expressions. Mathematically vectors are elements of a vector space over a field , and for use in physics is usually defined with or . Concretely, if the dimension of is finite, then, after making a choice of basis, we can view such vector spaces as or . The dual space is the space of linear functionals mapping .
Algèbre de CliffordEn mathématiques, l'algèbre de Clifford est un objet d'algèbre multilinéaire associé à une forme quadratique. C'est une algèbre associative sur un corps, permettant un type de calcul étendu, englobant les vecteurs, les scalaires et des « multivecteurs » obtenus par produits de vecteurs, et avec une règle de calcul qui traduit la géométrie de la forme quadratique sous-jacente. Le nom de cette structure est un hommage au mathématicien anglais William Kingdon Clifford.
Algèbre multilinéaireEn mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept de vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le concept de tenseur et développe la théorie des espaces tensoriels. Dans les applications, de nombreux types de tenseurs surviennent. La théorie se veut exhaustive et comprend l'étude d'un certain nombre d'espaces et l'exposé de leurs relations.
Outer productIn linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors (multidimensional arrays of numbers), their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.
Symbole delta de KroneckerEn mathématiques, le symbole delta de Kronecker, également appelé symbole de Kronecker ou delta de Kronecker, est une fonction de deux variables qui est égale à 1 si celles-ci sont égales, et 0 sinon. Il est symbolisé par la lettre δ (delta minuscule) de l'alphabet grec. ou, en notation tensorielle : où δ et δ sont des vecteurs unitaires tels que seule la i-ème (respectivement la j-ème) coordonnée soit non nulle (et vaille donc 1).