Régularisation (physique)En physique théorique, la régularisation est une procédure ad-hoc qui consiste à modifier une grandeur physique qui présente une singularité afin de la rendre régulière. La régularisation est par exemple abondamment utilisée en théorie quantique des champs en relation avec la procédure de renormalisation, ainsi qu'en relativité générale pour le calcul du problème à deux corps en paramétrisation post-newtonienne. Le potentiel newtonien en coordonnées sphériques s'écrit : où k est une constante.
1 + 2 + 3 + 4 + ⋯1 + 2 + 3 + 4 + ⋯, la série des entiers strictement positifs pris dans l'ordre croissant, est en analyse une série divergente. La n-ième somme partielle de cette série est le nombre triangulaire : La suite de ces sommes partielles est croissante et non majorée donc tend vers l'infini. Bien que cette série ne possède donc a priori pas de valeur significative, elle peut être manipulée pour produire un certain nombre de résultats mathématiquement intéressants (en particulier, diverses méthodes de sommation lui donnent la valeur -1/12), dont certains ont des applications dans d'autres domaines, comme l'analyse complexe, la théorie quantique des champs, la théorie des cordes ou encore l'effet Casimir.
1 + 1 + 1 + 1 + ⋯En mathématiques, 1 + 1 + 1 + 1 + ⋯, également écrit , ou simplement , est une série divergente, ce qui signifie que la suite de ses sommes partielles ne converge pas vers une limite dans les nombres réels. La suite (1n) est la suite géométrique de raison 1. La série géométrique de raison 1, à la différence de toutes les autres de raison rationnelle différente de −1, ne converge ni dans les réels, ni dans les nombres p-adiques pour certains p. Dans la droite réelle achevée, puisque la suite des sommes partielles est croissante et non majorée.
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
Effet Casimirvignette|Forces de Casimir sur des plaques parallèles. vignette|Forces de Casimir sur des plaques parallèles. L’effet Casimir, tel que prédit par le physicien néerlandais Hendrik Casimir en 1948, est une force attractive entre deux plaques parallèles conductrices et non chargées. Cet effet, dû aux fluctuations quantiques du vide, existe également pour d'autres géométries d'électrodes. Expérimentalement, on utilise souvent des miroirs. Les fluctuations quantiques du vide sont présentes dans toute théorie quantique des champs.