Polygone régulierEn géométrie euclidienne, un polygone régulier est un polygone à la fois équilatéral (tous ses côtés ont la même longueur) et équiangle (tous ses angles ont la même mesure). Un polygone régulier est soit convexe, soit étoilé. Tous les polygones réguliers convexes d'un même nombre de côtés sont semblables. Tout polygone régulier étoilé de n côtés a une enveloppe convexe de n côtés, qui est un polygone régulier. Un entier n supérieur ou égal à 3 étant donné, il existe un polygone régulier convexe de n côtés.
Symbole de SchläfliEn mathématiques, le symbole de Schläfli est une notation de la forme {p,q,r, ...} qui permet de définir les polyèdres réguliers et les pavages. Cette notation donne un résumé de certaines propriétés importantes d'un polytope régulier particulier. Le symbole de Schläfli fut nommé ainsi en l'honneur du mathématicien du Ludwig Schläfli qui fit d'importantes contributions en géométrie et dans d'autres domaines. Le symbole de Schläfli pour un polygone régulier convexe à n côtés est {n}.
Polygone régulier étoiléEn géométrie, un polygone régulier étoilé (à ne pas confondre avec une partie étoilée) est un polygone régulier non convexe. Les polygones étoilés non réguliers ne sont pas formellement définis. Branko Grünbaum identifie deux notions primaires utilisées par Kepler, l'une étant le polygone régulier étoilé avec des arêtes sécantes qui ne génèrent pas de nouveaux sommets, et l'autre étant de simples polygones concaves.
Pentagrammevignette|Pentagramme dans un pentagone. Pentagramme est, à l'origine, un terme qui concerne l'écriture. Il se réfère à un caractère calligraphié composés de cinq graphèmes élémentaires. Le signe de cantillation hébraïque chalchèlèt est un pentagramme. Plus généralement, le mot pentagramme s'applique à un graphique ou un objet qui représente une figure à cinq éléments, telle une étoile à cinq branches, principalement utilisé en ésotérisme et en magie.
HeptagrammeUn heptagramme est une étoile à sept branches dessinée sur la base de sept droites. Plus précisément : c'est un heptagone régulier étoilé. Un heptagramme est une stellation de l'heptagone régulier convexe. Il existe deux types d'heptagrammes, désignés par leur symbole de Schläfli {7/2} et {7/3}, le second nombre représentant l'intervalle entre sommets utilisé pour tracer la figure à partir de l'heptagone régulier convexe {7/1}. La plus petite étoile polygonale est le pentagramme {5/2}.
PentachoreEn géométrie euclidienne de dimension quatre, le pentachore, ou 5-cellules, aussi appelé un pentatope ou 4-simplexe, est le polychore régulier convexe le plus simple. C'est la généralisation d'un triangle du plan ou d'un tétraèdre de l'espace. Le pentachore est constitué de 5 cellules, toutes des tétraèdres. C'est un polytope auto-dual. Sa figure de sommet est un tétraèdre. Son intersection maximale avec l'espace tridimensionnel est le prisme triangulaire. Le symbole de Schläfli du pentachore est {3,3,3}.
Ennéagramme (géométrie)In geometry, an enneagram (🟙 U+1F7D9) is a nine-pointed plane figure. It is sometimes called a nonagram, nonangle, or enneagon. The word 'enneagram' combines the numeral prefix ennea- with the Greek suffix -gram. The gram suffix derives from γραμμῆς (grammēs) meaning a line. A regular enneagram is a 9-sided star polygon. It is constructed using the same points as the regular enneagon, but the points are connected in fixed steps. Two forms of regular enneagram exist: One form connects every second point and is represented by the Schläfli symbol {9/2}.
Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
Figure isogonaleEn géométrie, un polytope (un polygone ou un polyèdre, par exemple) est dit isogonal si tous ses sommets sont identiques. Autrement dit, chaque sommet est entouré du même type de face dans le même ordre et avec les mêmes angles entre les faces correspondantes. Plus précisément : le groupe de symétrie du polytope agit transitivement sur l'ensemble des sommets. thumb|Un octogone isogonal convexe et ses quatre axes de symétrie. Tous les polygones réguliers, qu'ils soient convexes ou étoilés, sont isogonaux.
Figure isotoxaleEn géométrie, un polytope (un polygone, un polyèdre ou un pavage, par exemple) est isotoxal si son groupe de symétrie agit transitivement sur ses côtés. Informellement, cela veut dire qu'il y a un seul type de côté dans cet objet : pour deux côtés de l'objet, il y a une translation, une rotation et/ou une réflexion qui transforme un côté en l'autre, tout en laissant la région occupée par l'objet inchangée. Le terme isotoxal est dérivé du Grec τοξον qui veut dire arc.