Explore la régression linéaire probabiliste et la régression de processus gaussien, en mettant l'accent sur la sélection du noyau et l'ajustement hyperparamétrique pour des prédictions précises.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Se plonge dans l'utilisation de l'apprentissage automatique pour prédire la densité des paires sans spin et comprendre la corrélation électronique dans des systèmes complexes.
Couvre les processus ponctuels, les critères de convergence, les fonctions de Laplace, les processus gaussiens, les fonctions de covariance et la stationnarité intrinsèque.
Explore les noyaux de régression de processus gaussien, les coûts de calcul et les comparaisons avec la régression de crête et d'autres techniques de régression non linéaire.
Couvre Vector Autoregression (VAR) dans l'analyse des séries chronologiques, y compris les propriétés d'échantillonnage et des exemples de processus VAR.