K3 (géométrie)En géométrie différentielle ou algébrique, les surfaces K3 sont les variétés de Calabi-Yau de plus petite dimension différentes des tores. Ce sont des variétés complexes de dimension complexe 2 compactes et kählériennes. Les surfaces K3 possèdent en outre la propriété d'être les seules variétés de Calabi-Yau distincte du 4-tore T d'un point de vue topologique ou différentiel. Cependant, en tant que variété complexe, il y a un nombre infini de surfaces K3 non isomorphes. On peut notamment les distinguer par le biais du .
Hyperkähler manifoldIn differential geometry, a hyperkähler manifold is a Riemannian manifold endowed with three integrable almost complex structures that are Kähler with respect to the Riemannian metric and satisfy the quaternionic relations . In particular, it is a hypercomplex manifold. All hyperkähler manifolds are Ricci-flat and are thus Calabi–Yau manifolds. Hyperkähler manifolds were defined by Eugenio Calabi in 1979. Equivalently, a hyperkähler manifold is a Riemannian manifold of dimension whose holonomy group is contained in the compact symplectic group Sp(n).
Calabi conjectureIn the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the complex Monge–Ampère equation, was an influential early result in the field of geometric analysis.
HolonomieEn mathématiques, et plus précisément en géométrie différentielle, l'holonomie d'une connexion sur une variété différentielle est une mesure de la façon dont le transport parallèle le long de boucles fermées modifie les informations géométriques transportées. Cette modification est une conséquence de la courbure de la connexion (ou plus généralement de sa "forme"). Pour des connexions plates, l'holonomie associée est un type de monodromie, et c'est dans ce cas une notion uniquement globale.
Géométrie complexeIn mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
Positive energy theoremThe positive energy theorem (also known as the positive mass theorem) refers to a collection of foundational results in general relativity and differential geometry. Its standard form, broadly speaking, asserts that the gravitational energy of an isolated system is nonnegative, and can only be zero when the system has no gravitating objects. Although these statements are often thought of as being primarily physical in nature, they can be formalized as mathematical theorems which can be proven using techniques of differential geometry, partial differential equations, and geometric measure theory.
Shiing-Shen ChernShiing-shen Chern (), né le à Jiaxing et mort le à Tianjin, est un mathématicien chinois, et naturalisé américain, considéré comme un des meilleurs spécialistes de la topologie différentielle et de la géométrie différentielle au . Remarque de prononciation : l'écriture Chern utilise la translittération Gwoyeu Romatzyh, dont le r ne se prononce pas et indique seulement que la syllabe considérée est prononcée au deuxième ton. Chern est né à Jiaxing dans la province de Zhejiang.
Supergravitévignette|Vue d'artiste de la sonde gravitationnelle B en orbite autour de la Terre pour mesurer l'espace-temps, une description quadridimensionnelle de l'univers comprenant la hauteur, la largeur, la longueur et le temps. En physique théorique, une théorie de la supergravité est une théorie du champ de Maxwell qui combine la supersymétrie et la relativité générale. Les théories de supergravité possèdent une super-symétrie locale, c'est-à-dire qu'elles sont invariantes par une transformation de supersymétrie dont les paramètres dépendent de la position dans l'espace.
Variété d'EinsteinLes 'variétés d'Einstein' sont un concept de géométrie différentielle et de physique théorique, étroitement relié à l'équation d'Einstein de la relativité générale. Il s'agit de variétés riemanniennes ou pseudo-riemanniennes dont la courbure de Ricci est proportionnelle à la métrique. Elles forment donc des solutions de l'équation d'Einstein dans le vide, avec une constante cosmologique non nécessairement nulle, mais sans se limiter au cadre de la géométrie lorentzienne utilisé en relativité générale, qui postule trois dimensions d'espace et une dimension de temps.
Homological mirror symmetryHomological mirror symmetry is a mathematical conjecture made by Maxim Kontsevich. It seeks a systematic mathematical explanation for a phenomenon called mirror symmetry first observed by physicists studying string theory. In an address to the 1994 International Congress of Mathematicians in Zürich, speculated that mirror symmetry for a pair of Calabi–Yau manifolds X and Y could be explained as an equivalence of a constructed from the algebraic geometry of X (the of coherent sheaves on X) and another triangulated category constructed from the symplectic geometry of Y (the derived ).