Concept

Espace complètement régulier

Concepts associés (23)
Compactifié d'Alexandrov
En mathématiques, et plus précisément en topologie générale, le compactifié d'Alexandrov (parfois écrit compactifié d'Alexandroff) est un objet introduit par le mathématicien Pavel Aleksandrov. Sa construction, appelée compactification d'Alexandrov, généralise celle de la sphère de Riemann à des espaces localement compacts quelconques auxquels elle revient à ajouter un « point à l'infini ». Soit un espace topologique localement compact. On peut, en ajoutant un point à , obtenir un espace compact.
Lemme d'Urysohn
vignette|Le mathématicien Pavel Urysohn donne son nom au lemme de l'article. Le lemme d'Urysohn est un résultat de topologie, qui établit que pour deux fermés disjoints F et G d'un espace normal X (ou plus généralement d'un espace T4), il existe une fonction continue de X dans l'intervalle [0, 1] qui vaut 0 sur F et 1 sur G. Ce lemme permit d'étendre aux espaces normaux le théorème de prolongement de Tietze, initialement démontré en 1914 par Heinrich Tietze pour les espaces métriques.
Espace pseudo-métrique
En mathématiques, un espace pseudo-métrique est un ensemble muni d'une pseudo-distance. C'est une généralisation de la notion d'espace métrique. Sur un espace vectoriel, tout comme une norme induit une distance, une semi-norme induit une semi-distance. Pour cette raison, en analyse fonctionnelle et dans les disciplines mathématiques apparentées, l'expression « espace semi-métrique » est utilisée comme synonyme d'espace pseudo-métrique (alors qu'« espace semi-métrique » a un autre sens en topologie).

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.