Espace de KolmogorovEn topologie et dans d'autres branches des mathématiques, un espace de Kolmogorov (ou espace T0) est un espace topologique dans lequel tous les points peuvent être « distingués du point de vue topologique ». De tous les axiomes de séparation qui peuvent être demandés à un espace topologique, cette condition est la plus faible. Les espaces de Kolmogorov doivent leur nom au mathématicien russe Andreï Kolmogorov. Un espace topologique X est dit de Kolmogorov si pour tout couple d'éléments distincts x et y de X, il existe un voisinage de x qui ne contient pas y ou un voisinage de y qui ne contient pas x.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Espace vectoriel topologiqueEn mathématiques, les espaces vectoriels topologiques sont une des structures de base de l'analyse fonctionnelle. Ce sont des espaces munis d'une structure topologique associée à une structure d'espace vectoriel, avec des relations de compatibilité entre les deux structures. Les exemples les plus simples d'espaces vectoriels topologiques sont les espaces vectoriels normés, parmi lesquels figurent les espaces de Banach, en particulier les espaces de Hilbert. Un espace vectoriel topologique (« e.v.t.
Topologie de l'ordreEn mathématiques, la topologie de l'ordre est une topologie naturelle définie sur tout ensemble ordonné (E, ≤), et qui dépend de la relation d'ordre ≤. Lorsque l'on définit la topologie usuelle de la droite numérique R, deux approches équivalentes sont possibles. On peut se fonder sur la relation d'ordre dans R, ou sur la valeur absolue de la distance entre deux nombres. Les égalités ci-dessous permettent de passer de l'une à l'autre : La valeur absolue se généralise en la notion de distance, qui induit le concept de topologie d'un espace métrique.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Espace régulierEn mathématiques, un espace régulier est un espace topologique vérifiant les deux conditions de séparation suivantes : T : l'espace est séparé ; T : on peut séparer un point x et un fermé ne contenant pas x par deux ouverts disjoints. vignette|Le point x et le fermé F sont respectivement inclus dans les ouverts U et V, qui sont disjoints. Soit E un espace topologique (non nécessairement séparé).
Topologie produitEn mathématiques, plus précisément en topologie, la topologie produit est une topologie définie sur un produit d'espaces topologiques. C'est de manière générale la topologie initiale associée aux projections de l'espace produit vers chacun de ses facteurs : autrement dit, c'est la topologie la moins fine rendant continues les projections. Dans le cas d'un produit fini, la topologie produit permet notamment de définir une topologie naturelle sur Rn à partir de celle de R.
Separated setsIn topology and related branches of mathematics, separated sets are pairs of subsets of a given topological space that are related to each other in a certain way: roughly speaking, neither overlapping nor touching. The notion of when two sets are separated or not is important both to the notion of connected spaces (and their connected components) as well as to the separation axioms for topological spaces. Separated sets should not be confused with separated spaces (defined below), which are somewhat related but different.
Topologie finaleEn mathématiques et plus précisément en topologie, la topologie finale, sur un ensemble d'arrivée commun à une famille d'applications définies chacune sur un espace topologique, est la topologie la plus fine pour laquelle toutes ces applications sont continues. La notion duale est celle de topologie initiale. Soient X un ensemble, (Y) une famille d'espaces topologiques et pour chaque indice i ∈ I, une application f : Y → X. La topologie finale sur X associée à la famille (f) est la plus fine des topologies sur X pour lesquelles chaque f est continue.
History of the separation axiomsThe history of the separation axioms in general topology has been convoluted, with many meanings competing for the same terms and many terms competing for the same concept. Before the current general definition of topological space, there were many definitions offered, some of which assumed (what we now think of as) some separation axioms. For example, the definition given by Felix Hausdorff in 1914 is equivalent to the modern definition plus the Hausdorff separation axiom.