Machine de Turing universellevignette|upright=1.5|Une machine de Turing quelconque M réalise un calcul à partir d'une entrée écrite sur son ruban. Une machine de Turing universelle U simule le calcul de M sur l'entrée de M à partir d'une description de M et de l'entrée de M écrits sur le ruban de U. En informatique, plus précisément en informatique théorique, une machine de Turing universelle est une machine de Turing qui peut simuler n'importe quelle machine de Turing sur n'importe quelle entrée.
John Horton ConwayJohn Horton Conway, né le à Liverpool et mort le à New Brunswick (New Jersey), est un mathématicien britannique. Il s'est intéressé aux théories des groupes finis, des nœuds, des nombres, des jeux et du codage. Né en 1937 en Angleterre, John Horton Conway s'intéresse très tôt aux mathématiques et décide de devenir mathématicien dès l'âge de 11 ans. Il étudie les mathématiques à Cambridge, au Gonville and Caius College, et obtient son Bachelor of Arts en 1959.
Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Thèse de ChurchLa thèse de Church est une thèse concernant la définition de la notion de calculabilité. Dans une forme dite « physique », elle affirme que la notion physique de la calculabilité, définie comme étant tout traitement systématique réalisable par un processus physique ou mécanique, peut être exprimée par un ensemble de règles de calcul, défini de plusieurs façons dont on a pu démontrer mathématiquement qu'elles sont équivalentes.
Oméga de Chaitinthumb|right|upright=1.2|Un nombre Oméga de Chaitin est une suite de bits représentant, sous forme concentrée, la solution du problème de l'arrêt pour tous les programmes d'une machine de Turing universelle donnée. En théorie algorithmique de l'information, une constante 'Oméga de Chaitin' (nombres définis et étudiés par Gregory Chaitin) caractérise de manière univoque et mathématiquement précise un nombre réel, qui possède la particularité d'être aléatoire et de ne pas être calculable au sens de Turing : un algorithme donné ne permet de calculer qu'un nombre fini de ses décimales.
Programmation logiqueLa programmation logique est une forme de programmation qui définit les applications à l'aide : d'une base de faits : ensemble de faits élémentaires concernant le domaine visé par l'application, d'une base de règles : règles de logique associant des conséquences plus ou moins directes à ces faits, d'un moteur d'inférence (ou démonstrateur de théorème ) : exploite ces faits et ces règles en réaction à une question ou requête. Cette approche se révèle beaucoup plus souple que la définition d'une succession d'instructions que l'ordinateur exécuterait.
Jeu de la vieLe Jeu de la vie est un automate cellulaire imaginé par John Horton Conway en 1970. Malgré des règles très simples, il est Turing-complet. C'est un jeu de simulation au sens mathématique. Le Jeu de la vie est un « jeu à zéro joueur », puisqu'il ne nécessite aucune intervention du joueur lors de son déroulement. Il s’agit d’un automate cellulaire, un modèle où chaque état conduit mécaniquement à l’état suivant à partir de règles préétablies.
Langage de programmation exotiqueUn langage de programmation exotique est un langage de programmation imaginé comme un test des limites de la création de langages de programmation, un exercice intellectuel ou encore une blague, sans aucune intention de créer un langage réellement utile. De tels langages sont souvent un passe-temps pour les hackers ou les programmeurs. L'adjectif « exotique » permet de distinguer ces langages de ceux communément utilisés dans l'industrie.
Machine à registres illimitésEn informatique, une machine à registres illimités ou URM (de l'anglais : Unlimited Register Machine) est un modèle abstrait du fonctionnement des appareils mécaniques de calcul, tout comme les machines de Turing et le lambda-calcul. Une URM est Turing-complète. Les registres de la machine sont représentés par : et peuvent contenir des éléments de . Un programme pour cette machine est représenté par toute suite de la forme : qui contient une suite finie d'instructions.
Zuse 3Le Z3 était un calculateur à relais électromécaniques conçu par l'ingénieur allemand Konrad Zuse. Ce calculateur était la première machine programmable pleinement automatique, ce qui en ferait le premier ordinateur du monde. Il était composé de relais électromécaniques, fonctionnait à une fréquence d'horloge de 5 à et exploitait des mots d'une longueur de 22 bits. Le code et les données étaient stockés sur des rubans perforés en celluloïd. Le Z3 fut achevé à Berlin en 1941.