Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Explore la linéarité des espaces tangents, la définition des vecteurs tangents sans un espace d'intégration et leurs opérations, ainsi que l'équivalence des différentes notions d'espace tangents.