Concept

Cavalieri's quadrature formula

Résumé
In calculus, Cavalieri's quadrature formula, named for 17th-century Italian mathematician Bonaventura Cavalieri, is the integral and generalizations thereof. This is the definite integral form; the indefinite integral form is: There are additional forms, listed below. Together with the linearity of the integral, this formula allows one to compute the integrals of all polynomials. The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = xn. Traditionally important cases are y = x2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm. For negative values of n (negative powers of x), there is a singularity at x = 0, and thus the definite integral is based at 1, rather than 0, yielding: Further, for negative fractional (non-integer) values of n, the power xn is not well-defined, hence the indefinite integral is only defined for positive x. However, for n a negative integer the power xn is defined for all non-zero x, and the indefinite integrals and definite integrals are defined, and can be computed via a symmetry argument, replacing x by −x, and basing the negative definite integral at −1. Over the complex numbers the definite integral (for negative values of n and x) can be defined via contour integration, but then depends on choice of path, specifically winding number – the geometric issue is that the function defines a covering space with a singularity at 0. There is also the exceptional case n = −1, yielding a logarithm instead of a power of x: (where "ln" means the natural logarithm, i.e. the logarithm to the base e = 2.71828...). The improper integral is often extended to negative values of x via the conventional choice: Note the use of the absolute value in the indefinite integral; this is to provide a unified form for the integral, and means that the integral of this odd function is an even function, though the logarithm is only defined for positive inputs, and in fact, different constant values of C can be chosen on either side of 0, since these do not change the derivative.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.