Giovanni Girolamo Saccheri (dʒoˈvanni dʒiˈrɔlamo sakˈkɛri) (ou Girolamo Saccheri), né à San Remo en 1667 et mort à Milan en 1733, est un mathématicien italien. Il a entraperçu la possibilité de géométries non euclidiennes. Il était prêtre jésuite.
Saccheri entre dans la Compagnie de Jésus en 1685 et est ordonné prêtre en 1694. Il enseigne d'abord la philosophie à l'université de Turin de 1694 à 1697, puis, de 1697 à sa mort, la philosophie, la théologie et les mathématiques à l'université de Pavie.
Il est un disciple du mathématicien Tommaso Ceva. Parmi ses ouvrages : Quaesita geometrica (1693), Logica demonstrativa (1697) et Neo-statica (1708). Mais c'est à sa dernière publication, datée de 1733 (l'année de sa mort), que Saccheri doit sa renommée : Euclides ab omni naevo vindicatus (Euclide lavé de toute tache). Parmi ses élèves : Luigi Guido Grandi.
Les quatre premiers postulats d'Euclide sont beaux, simples, « évidents ». Le cinquième postulat est complexe, d'énoncé long, d'apparence maladroite : . De plus, Euclide lui-même attend d'avoir à démontrer sa pour s'en servir. De là l'idée que ce postulat est de trop, qu'il est en fait démontrable (que c'est un théorème). C'est l'idée qu'eut Saccheri. D'autres l'ont eue également, mais chez Saccheri on semble très près de franchir le pas — qu'il ne franchit pas — vers les géométries non euclidiennes.
En 1733, Saccheri publia : Euclides ab omni naevo vindicatus (Euclide lavé de toute tache). Cette œuvre, tombée dans l'oubli, fut redécouverte au milieu du par Eugenio Beltrami, qui a su y voir un moment important de l'histoire de la géométrie.
L'objectif de Saccheri était de prouver par l'absurde la validité des axiomes d'Euclide (on disait à cette époque « postulats d'Euclide »). Il cherchait à obtenir une contradiction en supposant la fausseté du postulat des parallèles. Il obtint des résultats bizarres, qui ont maintenant le statut de théorèmes de géométrie hyperbolique, tels que l'existence de triangles dont la somme des angles est inférieure à 180°.