Arthur Cayley ( - ) est un mathématicien britannique. Il fait partie des fondateurs de l'école britannique moderne de mathématiques pures. C'est à la faveur d'une visite estivale de ses parents, Henry Cayley (1768-1850) et Maria Antonia Doughty (1794-1875), qui résident alors en Russie, à Saint-Pétersbourg, qu'Arthur Cayley naît en Angleterre, à Richmond, comté de Surrey, plus précisément. La famille paternelle d'Arthur est originaire de Normandie, un aïeul , Osborne de Cailly, ayant été l'un des seigneurs engagés dans l'invasion normande de l'Angleterre en 1066. Commerçant avec la Russie, le grand-père d'Arthur, John Cayley, s'établit à Saint-Péterbourg et son fils Henry devient un membre éminent de la communauté britannique locale. En 1814, Henry Cayley épouse Maria Antonia Doughty, sa cadette de vingt-six ans, qui lui donne cinq enfants: Sophia, William-Henry, Arthur, Charles Bagot et Henrietta-Caroline. À l'instar d'autres familles de commerçants britanniques, les époux Cayley décident que leurs enfants seront éduqués à demeure, par des tuteurs. Cette éducation comprend l'apprentissage du français, la langue de la diplomatie et du commerce employée dans la ville russe, et dont Arthur fera usage toute sa vie pour lire et publier des articles mathématiques. En 1828, lorsque la famille d'Henry Cayley rentre définitivement en Grande-Bretagne, elle s'installe dans le quartier de Regent's Park, à Londres. Arthur a alors sept ans. En 1831, à l'âge de dix ans, Arthur est envoyé dans un collège anglican privé, qui accueille des élèves entre huit et quinze ans prédisposés à intégrer les écoles senior d'éducation secondaire. Depuis la prime enfance, Arthur fait montre de belles aptitudes pour les mathématiques, avec une affection toute particulière pour les calculs arithmétiques. En , âgé de quatorze ans, le jeune Arthur est admis au département senior du tout récent King's College de Londres où il y a une chaire de mathématiques, occupée par le révérend Thomas G. Hall.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-115(a): Advanced linear algebra II - diagonalization
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
Publications associées (5)
Concepts associés (16)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
James Joseph Sylvester
James Joseph Sylvester, né le et mort le à Londres, est un mathématicien anglais. Fils d’un commerçant juif de Londres, Abraham Joseph, James prend le nom anglais de James J. Sylvester à l’exemple de son frère qui venait d’émigrer aux États-Unis. Âgé de seulement 14 ans, il suit les conférences d’Augustus de Morgan à l’Université de Londres mais, accusé d'avoir tenté de poignarder un autre étudiant, sa famille doit lui interdire d'y retourner et l'inscrit à la Liverpool Royal Institution.
Algèbre
L'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.