Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
James Joseph SylvesterJames Joseph Sylvester, né le et mort le à Londres, est un mathématicien anglais. Fils d’un commerçant juif de Londres, Abraham Joseph, James prend le nom anglais de James J. Sylvester à l’exemple de son frère qui venait d’émigrer aux États-Unis. Âgé de seulement 14 ans, il suit les conférences d’Augustus de Morgan à l’Université de Londres mais, accusé d'avoir tenté de poignarder un autre étudiant, sa famille doit lui interdire d'y retourner et l'inscrit à la Liverpool Royal Institution.
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Joseph-Louis LagrangeJoseph Louis de Lagrange (en italien Giuseppe Luigi Lagrangia ou aussi Giuseppe Ludovico De la Grange Tournier), né à Turin le de parents français descendants de Descartes et mort à Paris le , est un mathématicien, mécanicien et astronome italien, originaire du royaume de Sardaigne et naturalisé français. À l'âge de trente ans, il quitte Turin et va séjourner à Berlin pendant vingt-et-un ans. Ensuite, il s'installe pour ses vingt-six dernières années à Paris où il prend la nationalité française en 1802.
Mathématiques puresvignette|Formules mathématiques Les mathématiques pures (ou mathématiques fondamentales) regroupent les activités de recherche en mathématiques motivée par des raisons autres que celles de l'application pratique. Les mathématiques pures reposent sur un ensemble d'axiomes et sur un système logique, détachés de l'expérience et de la réalité. Il n'est cependant pas rare que des théories développées sans objectif pratique soient utilisées plus tard pour certaines applications, comme la géométrie riemannienne pour la relativité générale.
Algèbre généraleL'algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d'algèbre élémentaire ; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques. Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Felix Klein'Felix Christian Klein', né le à Düsseldorf et mort le à Göttingen) est un mathématicien allemand, connu pour ses travaux en théorie des groupes, en géométrie non euclidienne, et en analyse. Il a aussi énoncé le très influent programme d'Erlangen, qui ramène l'étude des différentes géométries à celle de leurs groupes de symétrie respectifs. Felix Klein naît le , date au sujet de laquelle il aimait faire remarquer sa composition de trois carrés de nombres premiers (5, 2 et 43), à Düsseldorf, siège du gouvernement provincial de la Rhénanie prussienne et important centre industriel du Royaume de Prusse.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .