Dual d'un polyèdreEn géométrie, il existe plusieurs façons (géométrique, combinatoire) de mettre les polyèdres en dualité : on peut se passer de support géométrique et définir une notion de dualité en termes purement combinatoires, qui s'étend d'ailleurs aux polyèdres et polytopes abstraits. Dans chaque cas, à tout polyèdre est associé un polyèdre appelé dual du premier, tel que : le dual du polyèdre dual est le polyèdre initial, les faces de l'un sont en correspondance avec les sommets de l'autre, en respectant les propriétés d'adjacence.
Prisme (solide)Un prisme est un solide géométrique délimité par deux polygones, appelés les bases du prisme, images l'un de l'autre par une translation. Ces bases sont reliées entre elles par des parallélogrammes. Quand ces parallélogrammes sont des rectangles, on dit que le prisme est droit. En géométrie affine, un prisme est un cas particulier de polyèdre. C'est un cylindre dont la base est polygonale. vignette|Prisme triangulaire. Une droite (d) de direction constante se déplaçant le long d'un polygone (p) décrit une surface appelée surface prismatique de polygone directeur (p) et de génératrice (d).
Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
OctaèdreEn géométrie, un octaèdre (du grec oktô, huit et hedra, face) est un polyèdre à huit faces. Certains octaèdres satisfont des conditions de symétrie ou de régularité des faces : l'octaèdre régulier, le prisme hexagonal, la pyramide à base heptagonale, le tétraèdre tronqué, le trapézoèdre tétragonal. Un octaèdre dont toutes les faces sont triangulaires possède douze arêtes et six sommets. Fichier:Octahedron.svg | Octaèdre régulier Fichier:Hexagonal_prism.png | Prisme hexagonal Fichier:Truncated_tetrahedron.
PolytopeUn polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.
HécatonicosachoreIn geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron and hecatonicosahedroid. The boundary of the 120-cell is composed of 120 dodecahedral cells with 4 meeting at each vertex. Together they form 720 pentagonal faces, 1200 edges, and 600 vertices.
Face (géométrie)vignette|Un cube : les surfaces en rouge sont les faces du cube. Chaque sommet est entouré par trois faces. En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés. Le suffixe èdre (dans polyèdre) est dérivé du grec hedra, qui signifie face. Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).
OctogoneUn octogone (du grec ὀκτάγωνον oktágōnon, cf. ὀκτώ oktṓ « huit » et γωνία gōnía « angle ») est un polygone à huit sommets, donc huit côtés et vingt diagonales. La somme des angles internes d'un octogone non croisé est égale à , soit °. Un octogone régulier est un octogone dont les huit côtés ont la même longueur et dont les angles internes ont la même valeur. Il existe un octogone régulier étoilé (l'octagramme régulier, noté {8/3}) mais usuellement, « octogone régulier » désigne implicitement l'octogone régulier convexe, noté {8}.