ContradictionEn logique des propositions, une contradiction ou antilogie est une formule qui est toujours fausse, quelle que soit la valeur des variables propositionnelles. On dit aussi que la formule est insatisfaisable, antilogique ou encore contradictoire. L’antilogie, de symbole , s’oppose à la tautologie qui est toujours vraie. La contradiction est une relation existant entre deux ou plusieurs termes ou deux ou plusieurs propositions dont l’un(e) affirme ce que l’autre nie : « A » et « non-A » sont contradictoires, les phrases « Tous les hommes sont barbus » et « Quelques hommes ne sont pas barbus » sont contradictoires.
Arithmétique de PresburgerEn logique mathématique, l'arithmétique de Presburger est la théorie du premier ordre des nombres entiers naturels munis de l'addition. Elle a été introduite en 1929 par Mojżesz Presburger. Il s'agit de l'arithmétique de Peano sans la multiplication, c’est-à-dire avec seulement l'addition, en plus du zéro et de l'opération successeur. Contrairement à l'arithmétique de Peano, l'arithmétique de Presburger est décidable. Cela signifie qu'il existe un algorithme qui détermine si un énoncé du langage de l'arithmétique de Presburger est démontrable à partir des axiomes de l'arithmétique de Presburger.
False (logic)In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, Opq), and the up tack symbol . Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.
Calcul des séquentsEn logique mathématique et plus précisément en théorie de la démonstration, le calcul des séquents est un système de déduction créé par Gerhard Gentzen. Le nom de ce formalisme fait référence à un style particulier de déduction ; le système original a été adapté à diverses logiques, telles que la logique classique, la logique intuitionniste et la logique linéaire. Un séquent est une suite d'hypothèses suivie d'une suite de conclusions, les deux suites étant usuellement séparées par le symbole (taquet droit), « : » (deux-points) ou encore (flèche droite) dans l'œuvre originale de Gentzen.
Théorème de complétude de GödelEn logique mathématique, le théorème de complétude du calcul des prédicats du premier ordre dresse une correspondance entre la sémantique et les démonstrations d'un système de déduction en logique du premier ordre. En termes intuitifs le théorème de complétude construit un pont entre vérité et démontrabilité formelle : tout énoncé vrai est démontrable.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).